Loading…
Cheminformatics-Based Design and Synthesis of Hydroxyapatite/Collagen Nanocomposites for Biomedical Applications
This paper presents a novel cheminformatics approach for the design and synthesis of hydroxyapatite/collagen nanocomposites, which have potential biomedical applications in tissue engineering, drug delivery, and orthopedic and dental implants. The nanocomposites are synthesized by the co-precipitati...
Saved in:
Published in: | Polymers 2023-12, Vol.16 (1), p.85 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c439t-dc16c0aa3078b56aba5a3c574e32d059aad696220fac6df70f0b19576cd6412c3 |
container_end_page | |
container_issue | 1 |
container_start_page | 85 |
container_title | Polymers |
container_volume | 16 |
creator | Aaddouz, Mohamed Azzaoui, Khalil Sabbahi, Rachid Youssoufi, Moulay Hfid Yahyaoui, Meryem Idrissi Asehraou, Abdeslam El Miz, Mohamed Hammouti, Belkheir Shityakov, Sergey Siaj, Mohamed Mejdoubi, Elmiloud |
description | This paper presents a novel cheminformatics approach for the design and synthesis of hydroxyapatite/collagen nanocomposites, which have potential biomedical applications in tissue engineering, drug delivery, and orthopedic and dental implants. The nanocomposites are synthesized by the co-precipitation method with different ratios of hydroxyapatite and collagen. Their mechanical, biological, and degradation properties are analyzed using various experimental and computational techniques. Attenuated total reflection-Fourier-transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction unveil the low crystallinity and nanoscale particle size of hydroxyapatite (22.62 nm) and hydroxyapatite/collagen composites (14.81 nm). These findings are substantiated by scanning electron microscopy with energy-dispersive X-ray spectroscopy, confirming the Ca/P ratio between 1.65 and 1.53 and attesting to the formation of non-stoichiometric apatites in all samples, further validated by molecular simulation. The antimicrobial activity of the nanocomposites is evaluated in vitro against several bacterial and fungal strains, demonstrating their medical potential. Additionally, in silico analyses are performed to predict the absorption, distribution, metabolism, and excretion properties and the bioavailability of the collagen samples. This study paves the way for the development of novel biomaterials using chemoinformatics tools and methods, facilitating the optimization of design and synthesis parameters, as well as the prediction of biological outcomes. Future research directions should encompass the investigation of in vivo biocompatibility and bioactivity of the nanocomposites, while exploring further applications and functionalities of these innovative materials. |
doi_str_mv | 10.3390/polym16010085 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10780405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A779346922</galeid><sourcerecordid>A779346922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-dc16c0aa3078b56aba5a3c574e32d059aad696220fac6df70f0b19576cd6412c3</originalsourceid><addsrcrecordid>eNptkk1v1DAQhiMEolXpkSuyxIVL2vF3ckLb5aNIFRyAszVrO7uuEjvEWUT-PV61lC7CPng8fuYdjz1V9ZLCBectXI6pXwaqgAI08kl1ykDzWnAFTx_ZJ9V5zrdQhpBKUf28OuENA6olnFbjeueHELs0DTgHm-srzN6Rdz6HbSQYHfm6xHlXtpmkjlwvbkq_FhwLPPvLdep73PpIPmNMNg1jysWdSZEjVyEN3gWLPVmNY1-MOaSYX1TPOuyzP79fz6rvH95_W1_XN18-flqvbmoreDvXzlJlAZGDbjZS4QYlciu18Jw5kC2iU61iDDq0ynUaOtjQVmplnRKUWX5Wvb3THfebcg_r4zxhb8YpDDgtJmEwxycx7Mw2_TS0ZAQBsii8uVeY0o-9z7MZQra-VBx92mfDWsqFkFyKgr7-B71N-ymW-g4Ua1jTKvWX2mLvzeHRS2J7EDUrrVsuVMtYoS7-Q5XpykfZFH0Xiv8ooL4LsFPKefLdQ5EUzKFNzFGbFP7V45d5oP80Bf8Np-O6Aw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912828966</pqid></control><display><type>article</type><title>Cheminformatics-Based Design and Synthesis of Hydroxyapatite/Collagen Nanocomposites for Biomedical Applications</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Aaddouz, Mohamed ; Azzaoui, Khalil ; Sabbahi, Rachid ; Youssoufi, Moulay Hfid ; Yahyaoui, Meryem Idrissi ; Asehraou, Abdeslam ; El Miz, Mohamed ; Hammouti, Belkheir ; Shityakov, Sergey ; Siaj, Mohamed ; Mejdoubi, Elmiloud</creator><creatorcontrib>Aaddouz, Mohamed ; Azzaoui, Khalil ; Sabbahi, Rachid ; Youssoufi, Moulay Hfid ; Yahyaoui, Meryem Idrissi ; Asehraou, Abdeslam ; El Miz, Mohamed ; Hammouti, Belkheir ; Shityakov, Sergey ; Siaj, Mohamed ; Mejdoubi, Elmiloud</creatorcontrib><description>This paper presents a novel cheminformatics approach for the design and synthesis of hydroxyapatite/collagen nanocomposites, which have potential biomedical applications in tissue engineering, drug delivery, and orthopedic and dental implants. The nanocomposites are synthesized by the co-precipitation method with different ratios of hydroxyapatite and collagen. Their mechanical, biological, and degradation properties are analyzed using various experimental and computational techniques. Attenuated total reflection-Fourier-transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction unveil the low crystallinity and nanoscale particle size of hydroxyapatite (22.62 nm) and hydroxyapatite/collagen composites (14.81 nm). These findings are substantiated by scanning electron microscopy with energy-dispersive X-ray spectroscopy, confirming the Ca/P ratio between 1.65 and 1.53 and attesting to the formation of non-stoichiometric apatites in all samples, further validated by molecular simulation. The antimicrobial activity of the nanocomposites is evaluated in vitro against several bacterial and fungal strains, demonstrating their medical potential. Additionally, in silico analyses are performed to predict the absorption, distribution, metabolism, and excretion properties and the bioavailability of the collagen samples. This study paves the way for the development of novel biomaterials using chemoinformatics tools and methods, facilitating the optimization of design and synthesis parameters, as well as the prediction of biological outcomes. Future research directions should encompass the investigation of in vivo biocompatibility and bioactivity of the nanocomposites, while exploring further applications and functionalities of these innovative materials.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym16010085</identifier><identifier>PMID: 38201750</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Analysis ; Antimicrobial agents ; Bioavailability ; Biocompatibility ; Biological properties ; Biomedical engineering ; Biomedical materials ; Bones ; Chemical synthesis ; Cheminformatics ; Collagen ; Composite materials ; Decomposition (Chemistry) ; Dental implants ; Dental materials ; Design optimization ; Design parameters ; Fourier transforms ; Health aspects ; Hydroxyapatite ; In vivo methods and tests ; Infrared analysis ; Infrared reflection ; Infrared spectroscopy ; Mechanical properties ; Methods ; Nanocomposites ; Nanoparticles ; Nitrates ; Orthopedics ; Radiation ; Scanning electron microscopy ; Spectrum analysis ; Synthesis ; Thermogravimetric analysis ; Tissue engineering ; Transplants & implants ; Wound healing</subject><ispartof>Polymers, 2023-12, Vol.16 (1), p.85</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c439t-dc16c0aa3078b56aba5a3c574e32d059aad696220fac6df70f0b19576cd6412c3</cites><orcidid>0000-0003-4286-3368 ; 0000-0003-0202-0112 ; 0000-0002-6953-9771 ; 0000-0003-3673-7904 ; 0000-0001-5195-8217 ; 0000-0002-8745-8799 ; 0000-0002-2850-7052 ; 0000-0003-0499-4260</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2912828966/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2912828966?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38201750$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aaddouz, Mohamed</creatorcontrib><creatorcontrib>Azzaoui, Khalil</creatorcontrib><creatorcontrib>Sabbahi, Rachid</creatorcontrib><creatorcontrib>Youssoufi, Moulay Hfid</creatorcontrib><creatorcontrib>Yahyaoui, Meryem Idrissi</creatorcontrib><creatorcontrib>Asehraou, Abdeslam</creatorcontrib><creatorcontrib>El Miz, Mohamed</creatorcontrib><creatorcontrib>Hammouti, Belkheir</creatorcontrib><creatorcontrib>Shityakov, Sergey</creatorcontrib><creatorcontrib>Siaj, Mohamed</creatorcontrib><creatorcontrib>Mejdoubi, Elmiloud</creatorcontrib><title>Cheminformatics-Based Design and Synthesis of Hydroxyapatite/Collagen Nanocomposites for Biomedical Applications</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>This paper presents a novel cheminformatics approach for the design and synthesis of hydroxyapatite/collagen nanocomposites, which have potential biomedical applications in tissue engineering, drug delivery, and orthopedic and dental implants. The nanocomposites are synthesized by the co-precipitation method with different ratios of hydroxyapatite and collagen. Their mechanical, biological, and degradation properties are analyzed using various experimental and computational techniques. Attenuated total reflection-Fourier-transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction unveil the low crystallinity and nanoscale particle size of hydroxyapatite (22.62 nm) and hydroxyapatite/collagen composites (14.81 nm). These findings are substantiated by scanning electron microscopy with energy-dispersive X-ray spectroscopy, confirming the Ca/P ratio between 1.65 and 1.53 and attesting to the formation of non-stoichiometric apatites in all samples, further validated by molecular simulation. The antimicrobial activity of the nanocomposites is evaluated in vitro against several bacterial and fungal strains, demonstrating their medical potential. Additionally, in silico analyses are performed to predict the absorption, distribution, metabolism, and excretion properties and the bioavailability of the collagen samples. This study paves the way for the development of novel biomaterials using chemoinformatics tools and methods, facilitating the optimization of design and synthesis parameters, as well as the prediction of biological outcomes. Future research directions should encompass the investigation of in vivo biocompatibility and bioactivity of the nanocomposites, while exploring further applications and functionalities of these innovative materials.</description><subject>Analysis</subject><subject>Antimicrobial agents</subject><subject>Bioavailability</subject><subject>Biocompatibility</subject><subject>Biological properties</subject><subject>Biomedical engineering</subject><subject>Biomedical materials</subject><subject>Bones</subject><subject>Chemical synthesis</subject><subject>Cheminformatics</subject><subject>Collagen</subject><subject>Composite materials</subject><subject>Decomposition (Chemistry)</subject><subject>Dental implants</subject><subject>Dental materials</subject><subject>Design optimization</subject><subject>Design parameters</subject><subject>Fourier transforms</subject><subject>Health aspects</subject><subject>Hydroxyapatite</subject><subject>In vivo methods and tests</subject><subject>Infrared analysis</subject><subject>Infrared reflection</subject><subject>Infrared spectroscopy</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nitrates</subject><subject>Orthopedics</subject><subject>Radiation</subject><subject>Scanning electron microscopy</subject><subject>Spectrum analysis</subject><subject>Synthesis</subject><subject>Thermogravimetric analysis</subject><subject>Tissue engineering</subject><subject>Transplants & implants</subject><subject>Wound healing</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkk1v1DAQhiMEolXpkSuyxIVL2vF3ckLb5aNIFRyAszVrO7uuEjvEWUT-PV61lC7CPng8fuYdjz1V9ZLCBectXI6pXwaqgAI08kl1ykDzWnAFTx_ZJ9V5zrdQhpBKUf28OuENA6olnFbjeueHELs0DTgHm-srzN6Rdz6HbSQYHfm6xHlXtpmkjlwvbkq_FhwLPPvLdep73PpIPmNMNg1jysWdSZEjVyEN3gWLPVmNY1-MOaSYX1TPOuyzP79fz6rvH95_W1_XN18-flqvbmoreDvXzlJlAZGDbjZS4QYlciu18Jw5kC2iU61iDDq0ynUaOtjQVmplnRKUWX5Wvb3THfebcg_r4zxhb8YpDDgtJmEwxycx7Mw2_TS0ZAQBsii8uVeY0o-9z7MZQra-VBx92mfDWsqFkFyKgr7-B71N-ymW-g4Ua1jTKvWX2mLvzeHRS2J7EDUrrVsuVMtYoS7-Q5XpykfZFH0Xiv8ooL4LsFPKefLdQ5EUzKFNzFGbFP7V45d5oP80Bf8Np-O6Aw</recordid><startdate>20231227</startdate><enddate>20231227</enddate><creator>Aaddouz, Mohamed</creator><creator>Azzaoui, Khalil</creator><creator>Sabbahi, Rachid</creator><creator>Youssoufi, Moulay Hfid</creator><creator>Yahyaoui, Meryem Idrissi</creator><creator>Asehraou, Abdeslam</creator><creator>El Miz, Mohamed</creator><creator>Hammouti, Belkheir</creator><creator>Shityakov, Sergey</creator><creator>Siaj, Mohamed</creator><creator>Mejdoubi, Elmiloud</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4286-3368</orcidid><orcidid>https://orcid.org/0000-0003-0202-0112</orcidid><orcidid>https://orcid.org/0000-0002-6953-9771</orcidid><orcidid>https://orcid.org/0000-0003-3673-7904</orcidid><orcidid>https://orcid.org/0000-0001-5195-8217</orcidid><orcidid>https://orcid.org/0000-0002-8745-8799</orcidid><orcidid>https://orcid.org/0000-0002-2850-7052</orcidid><orcidid>https://orcid.org/0000-0003-0499-4260</orcidid></search><sort><creationdate>20231227</creationdate><title>Cheminformatics-Based Design and Synthesis of Hydroxyapatite/Collagen Nanocomposites for Biomedical Applications</title><author>Aaddouz, Mohamed ; Azzaoui, Khalil ; Sabbahi, Rachid ; Youssoufi, Moulay Hfid ; Yahyaoui, Meryem Idrissi ; Asehraou, Abdeslam ; El Miz, Mohamed ; Hammouti, Belkheir ; Shityakov, Sergey ; Siaj, Mohamed ; Mejdoubi, Elmiloud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-dc16c0aa3078b56aba5a3c574e32d059aad696220fac6df70f0b19576cd6412c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Antimicrobial agents</topic><topic>Bioavailability</topic><topic>Biocompatibility</topic><topic>Biological properties</topic><topic>Biomedical engineering</topic><topic>Biomedical materials</topic><topic>Bones</topic><topic>Chemical synthesis</topic><topic>Cheminformatics</topic><topic>Collagen</topic><topic>Composite materials</topic><topic>Decomposition (Chemistry)</topic><topic>Dental implants</topic><topic>Dental materials</topic><topic>Design optimization</topic><topic>Design parameters</topic><topic>Fourier transforms</topic><topic>Health aspects</topic><topic>Hydroxyapatite</topic><topic>In vivo methods and tests</topic><topic>Infrared analysis</topic><topic>Infrared reflection</topic><topic>Infrared spectroscopy</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nitrates</topic><topic>Orthopedics</topic><topic>Radiation</topic><topic>Scanning electron microscopy</topic><topic>Spectrum analysis</topic><topic>Synthesis</topic><topic>Thermogravimetric analysis</topic><topic>Tissue engineering</topic><topic>Transplants & implants</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aaddouz, Mohamed</creatorcontrib><creatorcontrib>Azzaoui, Khalil</creatorcontrib><creatorcontrib>Sabbahi, Rachid</creatorcontrib><creatorcontrib>Youssoufi, Moulay Hfid</creatorcontrib><creatorcontrib>Yahyaoui, Meryem Idrissi</creatorcontrib><creatorcontrib>Asehraou, Abdeslam</creatorcontrib><creatorcontrib>El Miz, Mohamed</creatorcontrib><creatorcontrib>Hammouti, Belkheir</creatorcontrib><creatorcontrib>Shityakov, Sergey</creatorcontrib><creatorcontrib>Siaj, Mohamed</creatorcontrib><creatorcontrib>Mejdoubi, Elmiloud</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aaddouz, Mohamed</au><au>Azzaoui, Khalil</au><au>Sabbahi, Rachid</au><au>Youssoufi, Moulay Hfid</au><au>Yahyaoui, Meryem Idrissi</au><au>Asehraou, Abdeslam</au><au>El Miz, Mohamed</au><au>Hammouti, Belkheir</au><au>Shityakov, Sergey</au><au>Siaj, Mohamed</au><au>Mejdoubi, Elmiloud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cheminformatics-Based Design and Synthesis of Hydroxyapatite/Collagen Nanocomposites for Biomedical Applications</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2023-12-27</date><risdate>2023</risdate><volume>16</volume><issue>1</issue><spage>85</spage><pages>85-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>This paper presents a novel cheminformatics approach for the design and synthesis of hydroxyapatite/collagen nanocomposites, which have potential biomedical applications in tissue engineering, drug delivery, and orthopedic and dental implants. The nanocomposites are synthesized by the co-precipitation method with different ratios of hydroxyapatite and collagen. Their mechanical, biological, and degradation properties are analyzed using various experimental and computational techniques. Attenuated total reflection-Fourier-transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction unveil the low crystallinity and nanoscale particle size of hydroxyapatite (22.62 nm) and hydroxyapatite/collagen composites (14.81 nm). These findings are substantiated by scanning electron microscopy with energy-dispersive X-ray spectroscopy, confirming the Ca/P ratio between 1.65 and 1.53 and attesting to the formation of non-stoichiometric apatites in all samples, further validated by molecular simulation. The antimicrobial activity of the nanocomposites is evaluated in vitro against several bacterial and fungal strains, demonstrating their medical potential. Additionally, in silico analyses are performed to predict the absorption, distribution, metabolism, and excretion properties and the bioavailability of the collagen samples. This study paves the way for the development of novel biomaterials using chemoinformatics tools and methods, facilitating the optimization of design and synthesis parameters, as well as the prediction of biological outcomes. Future research directions should encompass the investigation of in vivo biocompatibility and bioactivity of the nanocomposites, while exploring further applications and functionalities of these innovative materials.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38201750</pmid><doi>10.3390/polym16010085</doi><orcidid>https://orcid.org/0000-0003-4286-3368</orcidid><orcidid>https://orcid.org/0000-0003-0202-0112</orcidid><orcidid>https://orcid.org/0000-0002-6953-9771</orcidid><orcidid>https://orcid.org/0000-0003-3673-7904</orcidid><orcidid>https://orcid.org/0000-0001-5195-8217</orcidid><orcidid>https://orcid.org/0000-0002-8745-8799</orcidid><orcidid>https://orcid.org/0000-0002-2850-7052</orcidid><orcidid>https://orcid.org/0000-0003-0499-4260</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2023-12, Vol.16 (1), p.85 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10780405 |
source | Publicly Available Content Database; PubMed Central |
subjects | Analysis Antimicrobial agents Bioavailability Biocompatibility Biological properties Biomedical engineering Biomedical materials Bones Chemical synthesis Cheminformatics Collagen Composite materials Decomposition (Chemistry) Dental implants Dental materials Design optimization Design parameters Fourier transforms Health aspects Hydroxyapatite In vivo methods and tests Infrared analysis Infrared reflection Infrared spectroscopy Mechanical properties Methods Nanocomposites Nanoparticles Nitrates Orthopedics Radiation Scanning electron microscopy Spectrum analysis Synthesis Thermogravimetric analysis Tissue engineering Transplants & implants Wound healing |
title | Cheminformatics-Based Design and Synthesis of Hydroxyapatite/Collagen Nanocomposites for Biomedical Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A13%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cheminformatics-Based%20Design%20and%20Synthesis%20of%20Hydroxyapatite/Collagen%20Nanocomposites%20for%20Biomedical%20Applications&rft.jtitle=Polymers&rft.au=Aaddouz,%20Mohamed&rft.date=2023-12-27&rft.volume=16&rft.issue=1&rft.spage=85&rft.pages=85-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym16010085&rft_dat=%3Cgale_pubme%3EA779346922%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-dc16c0aa3078b56aba5a3c574e32d059aad696220fac6df70f0b19576cd6412c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2912828966&rft_id=info:pmid/38201750&rft_galeid=A779346922&rfr_iscdi=true |