Loading…

Cheminformatics-Based Design and Synthesis of Hydroxyapatite/Collagen Nanocomposites for Biomedical Applications

This paper presents a novel cheminformatics approach for the design and synthesis of hydroxyapatite/collagen nanocomposites, which have potential biomedical applications in tissue engineering, drug delivery, and orthopedic and dental implants. The nanocomposites are synthesized by the co-precipitati...

Full description

Saved in:
Bibliographic Details
Published in:Polymers 2023-12, Vol.16 (1), p.85
Main Authors: Aaddouz, Mohamed, Azzaoui, Khalil, Sabbahi, Rachid, Youssoufi, Moulay Hfid, Yahyaoui, Meryem Idrissi, Asehraou, Abdeslam, El Miz, Mohamed, Hammouti, Belkheir, Shityakov, Sergey, Siaj, Mohamed, Mejdoubi, Elmiloud
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c439t-dc16c0aa3078b56aba5a3c574e32d059aad696220fac6df70f0b19576cd6412c3
container_end_page
container_issue 1
container_start_page 85
container_title Polymers
container_volume 16
creator Aaddouz, Mohamed
Azzaoui, Khalil
Sabbahi, Rachid
Youssoufi, Moulay Hfid
Yahyaoui, Meryem Idrissi
Asehraou, Abdeslam
El Miz, Mohamed
Hammouti, Belkheir
Shityakov, Sergey
Siaj, Mohamed
Mejdoubi, Elmiloud
description This paper presents a novel cheminformatics approach for the design and synthesis of hydroxyapatite/collagen nanocomposites, which have potential biomedical applications in tissue engineering, drug delivery, and orthopedic and dental implants. The nanocomposites are synthesized by the co-precipitation method with different ratios of hydroxyapatite and collagen. Their mechanical, biological, and degradation properties are analyzed using various experimental and computational techniques. Attenuated total reflection-Fourier-transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction unveil the low crystallinity and nanoscale particle size of hydroxyapatite (22.62 nm) and hydroxyapatite/collagen composites (14.81 nm). These findings are substantiated by scanning electron microscopy with energy-dispersive X-ray spectroscopy, confirming the Ca/P ratio between 1.65 and 1.53 and attesting to the formation of non-stoichiometric apatites in all samples, further validated by molecular simulation. The antimicrobial activity of the nanocomposites is evaluated in vitro against several bacterial and fungal strains, demonstrating their medical potential. Additionally, in silico analyses are performed to predict the absorption, distribution, metabolism, and excretion properties and the bioavailability of the collagen samples. This study paves the way for the development of novel biomaterials using chemoinformatics tools and methods, facilitating the optimization of design and synthesis parameters, as well as the prediction of biological outcomes. Future research directions should encompass the investigation of in vivo biocompatibility and bioactivity of the nanocomposites, while exploring further applications and functionalities of these innovative materials.
doi_str_mv 10.3390/polym16010085
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10780405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A779346922</galeid><sourcerecordid>A779346922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-dc16c0aa3078b56aba5a3c574e32d059aad696220fac6df70f0b19576cd6412c3</originalsourceid><addsrcrecordid>eNptkk1v1DAQhiMEolXpkSuyxIVL2vF3ckLb5aNIFRyAszVrO7uuEjvEWUT-PV61lC7CPng8fuYdjz1V9ZLCBectXI6pXwaqgAI08kl1ykDzWnAFTx_ZJ9V5zrdQhpBKUf28OuENA6olnFbjeueHELs0DTgHm-srzN6Rdz6HbSQYHfm6xHlXtpmkjlwvbkq_FhwLPPvLdep73PpIPmNMNg1jysWdSZEjVyEN3gWLPVmNY1-MOaSYX1TPOuyzP79fz6rvH95_W1_XN18-flqvbmoreDvXzlJlAZGDbjZS4QYlciu18Jw5kC2iU61iDDq0ynUaOtjQVmplnRKUWX5Wvb3THfebcg_r4zxhb8YpDDgtJmEwxycx7Mw2_TS0ZAQBsii8uVeY0o-9z7MZQra-VBx92mfDWsqFkFyKgr7-B71N-ymW-g4Ua1jTKvWX2mLvzeHRS2J7EDUrrVsuVMtYoS7-Q5XpykfZFH0Xiv8ooL4LsFPKefLdQ5EUzKFNzFGbFP7V45d5oP80Bf8Np-O6Aw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912828966</pqid></control><display><type>article</type><title>Cheminformatics-Based Design and Synthesis of Hydroxyapatite/Collagen Nanocomposites for Biomedical Applications</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Aaddouz, Mohamed ; Azzaoui, Khalil ; Sabbahi, Rachid ; Youssoufi, Moulay Hfid ; Yahyaoui, Meryem Idrissi ; Asehraou, Abdeslam ; El Miz, Mohamed ; Hammouti, Belkheir ; Shityakov, Sergey ; Siaj, Mohamed ; Mejdoubi, Elmiloud</creator><creatorcontrib>Aaddouz, Mohamed ; Azzaoui, Khalil ; Sabbahi, Rachid ; Youssoufi, Moulay Hfid ; Yahyaoui, Meryem Idrissi ; Asehraou, Abdeslam ; El Miz, Mohamed ; Hammouti, Belkheir ; Shityakov, Sergey ; Siaj, Mohamed ; Mejdoubi, Elmiloud</creatorcontrib><description>This paper presents a novel cheminformatics approach for the design and synthesis of hydroxyapatite/collagen nanocomposites, which have potential biomedical applications in tissue engineering, drug delivery, and orthopedic and dental implants. The nanocomposites are synthesized by the co-precipitation method with different ratios of hydroxyapatite and collagen. Their mechanical, biological, and degradation properties are analyzed using various experimental and computational techniques. Attenuated total reflection-Fourier-transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction unveil the low crystallinity and nanoscale particle size of hydroxyapatite (22.62 nm) and hydroxyapatite/collagen composites (14.81 nm). These findings are substantiated by scanning electron microscopy with energy-dispersive X-ray spectroscopy, confirming the Ca/P ratio between 1.65 and 1.53 and attesting to the formation of non-stoichiometric apatites in all samples, further validated by molecular simulation. The antimicrobial activity of the nanocomposites is evaluated in vitro against several bacterial and fungal strains, demonstrating their medical potential. Additionally, in silico analyses are performed to predict the absorption, distribution, metabolism, and excretion properties and the bioavailability of the collagen samples. This study paves the way for the development of novel biomaterials using chemoinformatics tools and methods, facilitating the optimization of design and synthesis parameters, as well as the prediction of biological outcomes. Future research directions should encompass the investigation of in vivo biocompatibility and bioactivity of the nanocomposites, while exploring further applications and functionalities of these innovative materials.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym16010085</identifier><identifier>PMID: 38201750</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Analysis ; Antimicrobial agents ; Bioavailability ; Biocompatibility ; Biological properties ; Biomedical engineering ; Biomedical materials ; Bones ; Chemical synthesis ; Cheminformatics ; Collagen ; Composite materials ; Decomposition (Chemistry) ; Dental implants ; Dental materials ; Design optimization ; Design parameters ; Fourier transforms ; Health aspects ; Hydroxyapatite ; In vivo methods and tests ; Infrared analysis ; Infrared reflection ; Infrared spectroscopy ; Mechanical properties ; Methods ; Nanocomposites ; Nanoparticles ; Nitrates ; Orthopedics ; Radiation ; Scanning electron microscopy ; Spectrum analysis ; Synthesis ; Thermogravimetric analysis ; Tissue engineering ; Transplants &amp; implants ; Wound healing</subject><ispartof>Polymers, 2023-12, Vol.16 (1), p.85</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c439t-dc16c0aa3078b56aba5a3c574e32d059aad696220fac6df70f0b19576cd6412c3</cites><orcidid>0000-0003-4286-3368 ; 0000-0003-0202-0112 ; 0000-0002-6953-9771 ; 0000-0003-3673-7904 ; 0000-0001-5195-8217 ; 0000-0002-8745-8799 ; 0000-0002-2850-7052 ; 0000-0003-0499-4260</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2912828966/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2912828966?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38201750$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aaddouz, Mohamed</creatorcontrib><creatorcontrib>Azzaoui, Khalil</creatorcontrib><creatorcontrib>Sabbahi, Rachid</creatorcontrib><creatorcontrib>Youssoufi, Moulay Hfid</creatorcontrib><creatorcontrib>Yahyaoui, Meryem Idrissi</creatorcontrib><creatorcontrib>Asehraou, Abdeslam</creatorcontrib><creatorcontrib>El Miz, Mohamed</creatorcontrib><creatorcontrib>Hammouti, Belkheir</creatorcontrib><creatorcontrib>Shityakov, Sergey</creatorcontrib><creatorcontrib>Siaj, Mohamed</creatorcontrib><creatorcontrib>Mejdoubi, Elmiloud</creatorcontrib><title>Cheminformatics-Based Design and Synthesis of Hydroxyapatite/Collagen Nanocomposites for Biomedical Applications</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>This paper presents a novel cheminformatics approach for the design and synthesis of hydroxyapatite/collagen nanocomposites, which have potential biomedical applications in tissue engineering, drug delivery, and orthopedic and dental implants. The nanocomposites are synthesized by the co-precipitation method with different ratios of hydroxyapatite and collagen. Their mechanical, biological, and degradation properties are analyzed using various experimental and computational techniques. Attenuated total reflection-Fourier-transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction unveil the low crystallinity and nanoscale particle size of hydroxyapatite (22.62 nm) and hydroxyapatite/collagen composites (14.81 nm). These findings are substantiated by scanning electron microscopy with energy-dispersive X-ray spectroscopy, confirming the Ca/P ratio between 1.65 and 1.53 and attesting to the formation of non-stoichiometric apatites in all samples, further validated by molecular simulation. The antimicrobial activity of the nanocomposites is evaluated in vitro against several bacterial and fungal strains, demonstrating their medical potential. Additionally, in silico analyses are performed to predict the absorption, distribution, metabolism, and excretion properties and the bioavailability of the collagen samples. This study paves the way for the development of novel biomaterials using chemoinformatics tools and methods, facilitating the optimization of design and synthesis parameters, as well as the prediction of biological outcomes. Future research directions should encompass the investigation of in vivo biocompatibility and bioactivity of the nanocomposites, while exploring further applications and functionalities of these innovative materials.</description><subject>Analysis</subject><subject>Antimicrobial agents</subject><subject>Bioavailability</subject><subject>Biocompatibility</subject><subject>Biological properties</subject><subject>Biomedical engineering</subject><subject>Biomedical materials</subject><subject>Bones</subject><subject>Chemical synthesis</subject><subject>Cheminformatics</subject><subject>Collagen</subject><subject>Composite materials</subject><subject>Decomposition (Chemistry)</subject><subject>Dental implants</subject><subject>Dental materials</subject><subject>Design optimization</subject><subject>Design parameters</subject><subject>Fourier transforms</subject><subject>Health aspects</subject><subject>Hydroxyapatite</subject><subject>In vivo methods and tests</subject><subject>Infrared analysis</subject><subject>Infrared reflection</subject><subject>Infrared spectroscopy</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nitrates</subject><subject>Orthopedics</subject><subject>Radiation</subject><subject>Scanning electron microscopy</subject><subject>Spectrum analysis</subject><subject>Synthesis</subject><subject>Thermogravimetric analysis</subject><subject>Tissue engineering</subject><subject>Transplants &amp; implants</subject><subject>Wound healing</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkk1v1DAQhiMEolXpkSuyxIVL2vF3ckLb5aNIFRyAszVrO7uuEjvEWUT-PV61lC7CPng8fuYdjz1V9ZLCBectXI6pXwaqgAI08kl1ykDzWnAFTx_ZJ9V5zrdQhpBKUf28OuENA6olnFbjeueHELs0DTgHm-srzN6Rdz6HbSQYHfm6xHlXtpmkjlwvbkq_FhwLPPvLdep73PpIPmNMNg1jysWdSZEjVyEN3gWLPVmNY1-MOaSYX1TPOuyzP79fz6rvH95_W1_XN18-flqvbmoreDvXzlJlAZGDbjZS4QYlciu18Jw5kC2iU61iDDq0ynUaOtjQVmplnRKUWX5Wvb3THfebcg_r4zxhb8YpDDgtJmEwxycx7Mw2_TS0ZAQBsii8uVeY0o-9z7MZQra-VBx92mfDWsqFkFyKgr7-B71N-ymW-g4Ua1jTKvWX2mLvzeHRS2J7EDUrrVsuVMtYoS7-Q5XpykfZFH0Xiv8ooL4LsFPKefLdQ5EUzKFNzFGbFP7V45d5oP80Bf8Np-O6Aw</recordid><startdate>20231227</startdate><enddate>20231227</enddate><creator>Aaddouz, Mohamed</creator><creator>Azzaoui, Khalil</creator><creator>Sabbahi, Rachid</creator><creator>Youssoufi, Moulay Hfid</creator><creator>Yahyaoui, Meryem Idrissi</creator><creator>Asehraou, Abdeslam</creator><creator>El Miz, Mohamed</creator><creator>Hammouti, Belkheir</creator><creator>Shityakov, Sergey</creator><creator>Siaj, Mohamed</creator><creator>Mejdoubi, Elmiloud</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4286-3368</orcidid><orcidid>https://orcid.org/0000-0003-0202-0112</orcidid><orcidid>https://orcid.org/0000-0002-6953-9771</orcidid><orcidid>https://orcid.org/0000-0003-3673-7904</orcidid><orcidid>https://orcid.org/0000-0001-5195-8217</orcidid><orcidid>https://orcid.org/0000-0002-8745-8799</orcidid><orcidid>https://orcid.org/0000-0002-2850-7052</orcidid><orcidid>https://orcid.org/0000-0003-0499-4260</orcidid></search><sort><creationdate>20231227</creationdate><title>Cheminformatics-Based Design and Synthesis of Hydroxyapatite/Collagen Nanocomposites for Biomedical Applications</title><author>Aaddouz, Mohamed ; Azzaoui, Khalil ; Sabbahi, Rachid ; Youssoufi, Moulay Hfid ; Yahyaoui, Meryem Idrissi ; Asehraou, Abdeslam ; El Miz, Mohamed ; Hammouti, Belkheir ; Shityakov, Sergey ; Siaj, Mohamed ; Mejdoubi, Elmiloud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-dc16c0aa3078b56aba5a3c574e32d059aad696220fac6df70f0b19576cd6412c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Antimicrobial agents</topic><topic>Bioavailability</topic><topic>Biocompatibility</topic><topic>Biological properties</topic><topic>Biomedical engineering</topic><topic>Biomedical materials</topic><topic>Bones</topic><topic>Chemical synthesis</topic><topic>Cheminformatics</topic><topic>Collagen</topic><topic>Composite materials</topic><topic>Decomposition (Chemistry)</topic><topic>Dental implants</topic><topic>Dental materials</topic><topic>Design optimization</topic><topic>Design parameters</topic><topic>Fourier transforms</topic><topic>Health aspects</topic><topic>Hydroxyapatite</topic><topic>In vivo methods and tests</topic><topic>Infrared analysis</topic><topic>Infrared reflection</topic><topic>Infrared spectroscopy</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nitrates</topic><topic>Orthopedics</topic><topic>Radiation</topic><topic>Scanning electron microscopy</topic><topic>Spectrum analysis</topic><topic>Synthesis</topic><topic>Thermogravimetric analysis</topic><topic>Tissue engineering</topic><topic>Transplants &amp; implants</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aaddouz, Mohamed</creatorcontrib><creatorcontrib>Azzaoui, Khalil</creatorcontrib><creatorcontrib>Sabbahi, Rachid</creatorcontrib><creatorcontrib>Youssoufi, Moulay Hfid</creatorcontrib><creatorcontrib>Yahyaoui, Meryem Idrissi</creatorcontrib><creatorcontrib>Asehraou, Abdeslam</creatorcontrib><creatorcontrib>El Miz, Mohamed</creatorcontrib><creatorcontrib>Hammouti, Belkheir</creatorcontrib><creatorcontrib>Shityakov, Sergey</creatorcontrib><creatorcontrib>Siaj, Mohamed</creatorcontrib><creatorcontrib>Mejdoubi, Elmiloud</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aaddouz, Mohamed</au><au>Azzaoui, Khalil</au><au>Sabbahi, Rachid</au><au>Youssoufi, Moulay Hfid</au><au>Yahyaoui, Meryem Idrissi</au><au>Asehraou, Abdeslam</au><au>El Miz, Mohamed</au><au>Hammouti, Belkheir</au><au>Shityakov, Sergey</au><au>Siaj, Mohamed</au><au>Mejdoubi, Elmiloud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cheminformatics-Based Design and Synthesis of Hydroxyapatite/Collagen Nanocomposites for Biomedical Applications</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2023-12-27</date><risdate>2023</risdate><volume>16</volume><issue>1</issue><spage>85</spage><pages>85-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>This paper presents a novel cheminformatics approach for the design and synthesis of hydroxyapatite/collagen nanocomposites, which have potential biomedical applications in tissue engineering, drug delivery, and orthopedic and dental implants. The nanocomposites are synthesized by the co-precipitation method with different ratios of hydroxyapatite and collagen. Their mechanical, biological, and degradation properties are analyzed using various experimental and computational techniques. Attenuated total reflection-Fourier-transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction unveil the low crystallinity and nanoscale particle size of hydroxyapatite (22.62 nm) and hydroxyapatite/collagen composites (14.81 nm). These findings are substantiated by scanning electron microscopy with energy-dispersive X-ray spectroscopy, confirming the Ca/P ratio between 1.65 and 1.53 and attesting to the formation of non-stoichiometric apatites in all samples, further validated by molecular simulation. The antimicrobial activity of the nanocomposites is evaluated in vitro against several bacterial and fungal strains, demonstrating their medical potential. Additionally, in silico analyses are performed to predict the absorption, distribution, metabolism, and excretion properties and the bioavailability of the collagen samples. This study paves the way for the development of novel biomaterials using chemoinformatics tools and methods, facilitating the optimization of design and synthesis parameters, as well as the prediction of biological outcomes. Future research directions should encompass the investigation of in vivo biocompatibility and bioactivity of the nanocomposites, while exploring further applications and functionalities of these innovative materials.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38201750</pmid><doi>10.3390/polym16010085</doi><orcidid>https://orcid.org/0000-0003-4286-3368</orcidid><orcidid>https://orcid.org/0000-0003-0202-0112</orcidid><orcidid>https://orcid.org/0000-0002-6953-9771</orcidid><orcidid>https://orcid.org/0000-0003-3673-7904</orcidid><orcidid>https://orcid.org/0000-0001-5195-8217</orcidid><orcidid>https://orcid.org/0000-0002-8745-8799</orcidid><orcidid>https://orcid.org/0000-0002-2850-7052</orcidid><orcidid>https://orcid.org/0000-0003-0499-4260</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2023-12, Vol.16 (1), p.85
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10780405
source Publicly Available Content Database; PubMed Central
subjects Analysis
Antimicrobial agents
Bioavailability
Biocompatibility
Biological properties
Biomedical engineering
Biomedical materials
Bones
Chemical synthesis
Cheminformatics
Collagen
Composite materials
Decomposition (Chemistry)
Dental implants
Dental materials
Design optimization
Design parameters
Fourier transforms
Health aspects
Hydroxyapatite
In vivo methods and tests
Infrared analysis
Infrared reflection
Infrared spectroscopy
Mechanical properties
Methods
Nanocomposites
Nanoparticles
Nitrates
Orthopedics
Radiation
Scanning electron microscopy
Spectrum analysis
Synthesis
Thermogravimetric analysis
Tissue engineering
Transplants & implants
Wound healing
title Cheminformatics-Based Design and Synthesis of Hydroxyapatite/Collagen Nanocomposites for Biomedical Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A13%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cheminformatics-Based%20Design%20and%20Synthesis%20of%20Hydroxyapatite/Collagen%20Nanocomposites%20for%20Biomedical%20Applications&rft.jtitle=Polymers&rft.au=Aaddouz,%20Mohamed&rft.date=2023-12-27&rft.volume=16&rft.issue=1&rft.spage=85&rft.pages=85-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym16010085&rft_dat=%3Cgale_pubme%3EA779346922%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-dc16c0aa3078b56aba5a3c574e32d059aad696220fac6df70f0b19576cd6412c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2912828966&rft_id=info:pmid/38201750&rft_galeid=A779346922&rfr_iscdi=true