Loading…
Non-Stick Length of Polymer-Polymer Interfaces under Small-Amplitude Oscillatory Shear Measurement
Interfaces in soft materials often exhibit deviation from non-slip/stick response and play a determining role in the rheological response of the overall system. We discuss detection techniques for the excess interface rheology using small-amplitude oscillatory shear (SAOS) measurements. A stacked bi...
Saved in:
Published in: | Polymers 2023-12, Vol.16 (1), p.77 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Interfaces in soft materials often exhibit deviation from non-slip/stick response and play a determining role in the rheological response of the overall system. We discuss detection techniques for the excess interface rheology using small-amplitude oscillatory shear (SAOS) measurements. A stacked bilayer of different polymers is sheared parallel to the interface and the dynamic shear response is measured. Deviation of the bilayer shear modulus from the superposition of the shear moduli of the component layers is analysed. Furthermore, we introduce a frequency-dependent non-stick length based on the bilayer SAOS response to characterize the excess interface rheology. We observe an approximate stick response in the interface in bilayers composed of the chemically same monomer as well as an apparent slip in the interface between immiscible polymers. The results suggest that the proposed non-stick length in SAOS is capable of detecting the apparent interfacial slip. The non-stick length in SAOS is readily applicable to other complex interfaces of different soft materials and offers a convenient tool to characterize the excess interface rheology. |
---|---|
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym16010077 |