Loading…

Protein-Aided Synthesis of Copper-Integrated Polyaniline Nanocomposite Encapsulated with Reduced Graphene Oxide for Highly Sensitive Electrochemical Detection of Dimetridazole in Real Samples

Dimetridazole (DMZ) is a derivative of nitroimidazole and is a veterinary drug used as an antibiotic to treat bacterial or protozoal infections in poultry. The residues of DMZ cause harmful side effects in human beings. Thus, we have constructed a superior electrocatalyst for DMZ detection. A copper...

Full description

Saved in:
Bibliographic Details
Published in:Polymers 2024-01, Vol.16 (1), p.162
Main Authors: Behera, Kartik, Mutharani, Bhuvanenthiran, Chang, Yen-Hsiang, Kumari, Monika, Chiu, Fang-Chyou
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dimetridazole (DMZ) is a derivative of nitroimidazole and is a veterinary drug used as an antibiotic to treat bacterial or protozoal infections in poultry. The residues of DMZ cause harmful side effects in human beings. Thus, we have constructed a superior electrocatalyst for DMZ detection. A copper (Cu)-integrated poly(aniline) (PANI) electrocatalyst (PANI-Cu@BSA) was prepared by using a one-step method of biomimetic mineralization and polymerization using bovine serum albumin (BSA) as a stabilizer. Then, the synthesized PANI-Cu@BSA was encapsulated with reduced graphene oxide (rGO) using an ultrasonication method. The PANI-Cu@BSA/rGO nanocomposite had superior water dispersibility, high electrical conductivity, and nanoscale particles. Moreover, a PANI-Cu@BSA/rGO nanocomposite-modified, screen-printed carbon electrode was used for the sensitive electrochemical detection of DMZ. In phosphate buffer solution, the PANI-Cu@BSA/rGO/SPCE displayed a current intensity greater than PANI-Cu@BSA/SPCE, rGO/SPCE, and bare SPCE. This is because PANI-Cu@BSA combined with rGO increases fast electron transfer between the electrode and analyte, and this synergy results in analyte-electrode junctions with extraordinary conductivity and active surface areas. PANI-Cu@BSA/rGO/SPCE had a low detection limit, a high sensitivity, and a linear range of 1.78 nM, 5.96 μA μM cm , and 0.79 to 2057 μM, respectively. The selective examination of DMZ was achieved with interfering molecules, and the PANI-Cu@BSA/rGO/SPCE showed excellent selectivity, stability, repeatability, and practicability.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym16010162