Loading…
Learning Mri Contrast-Agnostic Registration
We introduce a strategy for learning image registration without acquired imaging data, producing powerful networks agnostic to magnetic resonance imaging (MRI) contrast. While classical methods accurately estimate the spatial correspondence between images, they solve an optimization problem for ever...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 903 |
container_issue | |
container_start_page | 899 |
container_title | |
container_volume | 2023 |
creator | Hoffmann, Malte Billot, Benjamin Iglesias, Juan E. Fischl, Bruce Dalca, Adrian V. |
description | We introduce a strategy for learning image registration without acquired imaging data, producing powerful networks agnostic to magnetic resonance imaging (MRI) contrast. While classical methods accurately estimate the spatial correspondence between images, they solve an optimization problem for every new image pair. Learning methods are fast at test time but limited to images with contrasts and geometric content similar to those seen during training. We propose to remove this dependency using a generative strategy that exposes networks to a wide range of images synthesized from segmentations during training, forcing them to generalize across contrasts. We show that networks trained within this framework generalize to a broad array of unseen MRI contrasts and surpass classical state-of-the-art brain registration accuracy by up to 12.4 Dice points for a variety of tested contrast combinations. Critically, training on arbitrary shapes synthesized from noise distributions results in competitive performance, removing the dependency on acquired data of any kind. Additionally, since anatomical label maps are often available for the anatomy of interest, we show that synthesizing images from these dramatically boosts performance, while still avoiding the need for real intensity images during training. |
doi_str_mv | 10.1109/ISBI48211.2021.9434113 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10782386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9434113</ieee_id><sourcerecordid>2921115492</sourcerecordid><originalsourceid>FETCH-LOGICAL-i315t-cda9a225b69cb5c35244a668b6e84effe36691b943a90de76f84ad2dbf71c6563</originalsourceid><addsrcrecordid>eNpVUdtKw0AQXUWxtfYLhNJHQVIze8vuk9TgpVARvDyHTTKJK2lSs6ng37ulsei8zDBzOGfmDCETCGcAob5avNwsuKIAMxpSmGnOOAA7IKcgpeBAuYRDMgTNRaC4oEd9HWmqBmTs3EfoI-KchfyEDJhnYoLrIblcomlrW5fTx9ZO46buWuO6YF7WjetsNn3G0jrf62xTn5HjwlQOx30ekbe729f4IVg-3S_i-TKwDEQXZLnRhlKRSp2lImOCcm6kVKlExbEokEmpIfUnGB3mGMlCcZPTPC0iyKSQbESud7zrTbrCPMPtUlWybu3KtN9JY2zyf1Lb96RsvhIII0WZ2jJc9Axt87lB1yUr6zKsKlNjs3EJ1d5J8AZQD538Fdur_FrkAec7gEXE_bh_APsBi0d1wA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2921115492</pqid></control><display><type>conference_proceeding</type><title>Learning Mri Contrast-Agnostic Registration</title><source>IEEE Xplore All Conference Series</source><creator>Hoffmann, Malte ; Billot, Benjamin ; Iglesias, Juan E. ; Fischl, Bruce ; Dalca, Adrian V.</creator><creatorcontrib>Hoffmann, Malte ; Billot, Benjamin ; Iglesias, Juan E. ; Fischl, Bruce ; Dalca, Adrian V.</creatorcontrib><description>We introduce a strategy for learning image registration without acquired imaging data, producing powerful networks agnostic to magnetic resonance imaging (MRI) contrast. While classical methods accurately estimate the spatial correspondence between images, they solve an optimization problem for every new image pair. Learning methods are fast at test time but limited to images with contrasts and geometric content similar to those seen during training. We propose to remove this dependency using a generative strategy that exposes networks to a wide range of images synthesized from segmentations during training, forcing them to generalize across contrasts. We show that networks trained within this framework generalize to a broad array of unseen MRI contrasts and surpass classical state-of-the-art brain registration accuracy by up to 12.4 Dice points for a variety of tested contrast combinations. Critically, training on arbitrary shapes synthesized from noise distributions results in competitive performance, removing the dependency on acquired data of any kind. Additionally, since anatomical label maps are often available for the anatomy of interest, we show that synthesizing images from these dramatically boosts performance, while still avoiding the need for real intensity images during training.</description><identifier>ISSN: 1945-7928</identifier><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 1665412461</identifier><identifier>EISBN: 9781665412469</identifier><identifier>DOI: 10.1109/ISBI48211.2021.9434113</identifier><identifier>PMID: 38213549</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Arrays ; deep learning without data ; Deformable registration ; Image registration ; Image segmentation ; image synthesis ; Learning systems ; Magnetic resonance imaging ; MRI-contrast independence ; Shape ; Training</subject><ispartof>2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), 2021, Vol.2023, p.899-903</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9434113$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,881,23908,23909,25117,27900,27901,54529,54906</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9434113$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38213549$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hoffmann, Malte</creatorcontrib><creatorcontrib>Billot, Benjamin</creatorcontrib><creatorcontrib>Iglesias, Juan E.</creatorcontrib><creatorcontrib>Fischl, Bruce</creatorcontrib><creatorcontrib>Dalca, Adrian V.</creatorcontrib><title>Learning Mri Contrast-Agnostic Registration</title><title>2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)</title><addtitle>ISBI</addtitle><addtitle>Proc IEEE Int Symp Biomed Imaging</addtitle><description>We introduce a strategy for learning image registration without acquired imaging data, producing powerful networks agnostic to magnetic resonance imaging (MRI) contrast. While classical methods accurately estimate the spatial correspondence between images, they solve an optimization problem for every new image pair. Learning methods are fast at test time but limited to images with contrasts and geometric content similar to those seen during training. We propose to remove this dependency using a generative strategy that exposes networks to a wide range of images synthesized from segmentations during training, forcing them to generalize across contrasts. We show that networks trained within this framework generalize to a broad array of unseen MRI contrasts and surpass classical state-of-the-art brain registration accuracy by up to 12.4 Dice points for a variety of tested contrast combinations. Critically, training on arbitrary shapes synthesized from noise distributions results in competitive performance, removing the dependency on acquired data of any kind. Additionally, since anatomical label maps are often available for the anatomy of interest, we show that synthesizing images from these dramatically boosts performance, while still avoiding the need for real intensity images during training.</description><subject>Arrays</subject><subject>deep learning without data</subject><subject>Deformable registration</subject><subject>Image registration</subject><subject>Image segmentation</subject><subject>image synthesis</subject><subject>Learning systems</subject><subject>Magnetic resonance imaging</subject><subject>MRI-contrast independence</subject><subject>Shape</subject><subject>Training</subject><issn>1945-7928</issn><issn>1945-8452</issn><isbn>1665412461</isbn><isbn>9781665412469</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVUdtKw0AQXUWxtfYLhNJHQVIze8vuk9TgpVARvDyHTTKJK2lSs6ng37ulsei8zDBzOGfmDCETCGcAob5avNwsuKIAMxpSmGnOOAA7IKcgpeBAuYRDMgTNRaC4oEd9HWmqBmTs3EfoI-KchfyEDJhnYoLrIblcomlrW5fTx9ZO46buWuO6YF7WjetsNn3G0jrf62xTn5HjwlQOx30ekbe729f4IVg-3S_i-TKwDEQXZLnRhlKRSp2lImOCcm6kVKlExbEokEmpIfUnGB3mGMlCcZPTPC0iyKSQbESud7zrTbrCPMPtUlWybu3KtN9JY2zyf1Lb96RsvhIII0WZ2jJc9Axt87lB1yUr6zKsKlNjs3EJ1d5J8AZQD538Fdur_FrkAec7gEXE_bh_APsBi0d1wA</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Hoffmann, Malte</creator><creator>Billot, Benjamin</creator><creator>Iglesias, Juan E.</creator><creator>Fischl, Bruce</creator><creator>Dalca, Adrian V.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210401</creationdate><title>Learning Mri Contrast-Agnostic Registration</title><author>Hoffmann, Malte ; Billot, Benjamin ; Iglesias, Juan E. ; Fischl, Bruce ; Dalca, Adrian V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i315t-cda9a225b69cb5c35244a668b6e84effe36691b943a90de76f84ad2dbf71c6563</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arrays</topic><topic>deep learning without data</topic><topic>Deformable registration</topic><topic>Image registration</topic><topic>Image segmentation</topic><topic>image synthesis</topic><topic>Learning systems</topic><topic>Magnetic resonance imaging</topic><topic>MRI-contrast independence</topic><topic>Shape</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Hoffmann, Malte</creatorcontrib><creatorcontrib>Billot, Benjamin</creatorcontrib><creatorcontrib>Iglesias, Juan E.</creatorcontrib><creatorcontrib>Fischl, Bruce</creatorcontrib><creatorcontrib>Dalca, Adrian V.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hoffmann, Malte</au><au>Billot, Benjamin</au><au>Iglesias, Juan E.</au><au>Fischl, Bruce</au><au>Dalca, Adrian V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Learning Mri Contrast-Agnostic Registration</atitle><btitle>2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)</btitle><stitle>ISBI</stitle><addtitle>Proc IEEE Int Symp Biomed Imaging</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>2023</volume><spage>899</spage><epage>903</epage><pages>899-903</pages><issn>1945-7928</issn><eissn>1945-8452</eissn><eisbn>1665412461</eisbn><eisbn>9781665412469</eisbn><abstract>We introduce a strategy for learning image registration without acquired imaging data, producing powerful networks agnostic to magnetic resonance imaging (MRI) contrast. While classical methods accurately estimate the spatial correspondence between images, they solve an optimization problem for every new image pair. Learning methods are fast at test time but limited to images with contrasts and geometric content similar to those seen during training. We propose to remove this dependency using a generative strategy that exposes networks to a wide range of images synthesized from segmentations during training, forcing them to generalize across contrasts. We show that networks trained within this framework generalize to a broad array of unseen MRI contrasts and surpass classical state-of-the-art brain registration accuracy by up to 12.4 Dice points for a variety of tested contrast combinations. Critically, training on arbitrary shapes synthesized from noise distributions results in competitive performance, removing the dependency on acquired data of any kind. Additionally, since anatomical label maps are often available for the anatomy of interest, we show that synthesizing images from these dramatically boosts performance, while still avoiding the need for real intensity images during training.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38213549</pmid><doi>10.1109/ISBI48211.2021.9434113</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1945-7928 |
ispartof | 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), 2021, Vol.2023, p.899-903 |
issn | 1945-7928 1945-8452 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10782386 |
source | IEEE Xplore All Conference Series |
subjects | Arrays deep learning without data Deformable registration Image registration Image segmentation image synthesis Learning systems Magnetic resonance imaging MRI-contrast independence Shape Training |
title | Learning Mri Contrast-Agnostic Registration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T14%3A27%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Learning%20Mri%20Contrast-Agnostic%20Registration&rft.btitle=2021%20IEEE%2018th%20International%20Symposium%20on%20Biomedical%20Imaging%20(ISBI)&rft.au=Hoffmann,%20Malte&rft.date=2021-04-01&rft.volume=2023&rft.spage=899&rft.epage=903&rft.pages=899-903&rft.issn=1945-7928&rft.eissn=1945-8452&rft_id=info:doi/10.1109/ISBI48211.2021.9434113&rft.eisbn=1665412461&rft.eisbn_list=9781665412469&rft_dat=%3Cproquest_CHZPO%3E2921115492%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i315t-cda9a225b69cb5c35244a668b6e84effe36691b943a90de76f84ad2dbf71c6563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2921115492&rft_id=info:pmid/38213549&rft_ieee_id=9434113&rfr_iscdi=true |