Loading…

Automated Prediction of Photographic Wound Assessment Tool in Chronic Wound Images

Many automated approaches have been proposed in literature to quantify clinically relevant wound features based on image processing analysis, aiming at removing human subjectivity and accelerate clinical practice. In this work we present a fully automated image processing pipeline leveraging deep le...

Full description

Saved in:
Bibliographic Details
Published in:Journal of medical systems 2024-01, Vol.48 (1), p.14, Article 14
Main Authors: Curti, Nico, Merli, Yuri, Zengarini, Corrado, Starace, Michela, Rapparini, Luca, Marcelli, Emanuela, Carlini, Gianluca, Buschi, Daniele, Castellani, Gastone C., Piraccini, Bianca Maria, Bianchi, Tommaso, Giampieri, Enrico
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c426t-b13a4e0b66fab47ded7f376369908e9c8feab60b67bb2006b54325ac2c4a09c13
container_end_page
container_issue 1
container_start_page 14
container_title Journal of medical systems
container_volume 48
creator Curti, Nico
Merli, Yuri
Zengarini, Corrado
Starace, Michela
Rapparini, Luca
Marcelli, Emanuela
Carlini, Gianluca
Buschi, Daniele
Castellani, Gastone C.
Piraccini, Bianca Maria
Bianchi, Tommaso
Giampieri, Enrico
description Many automated approaches have been proposed in literature to quantify clinically relevant wound features based on image processing analysis, aiming at removing human subjectivity and accelerate clinical practice. In this work we present a fully automated image processing pipeline leveraging deep learning and a large wound segmentation dataset to perform wound detection and following prediction of the Photographic Wound Assessment Tool (PWAT), automatizing the clinical judgement of the adequate wound healing. Starting from images acquired by smartphone cameras, a series of textural and morphological features are extracted from the wound areas, aiming to mimic the typical clinical considerations for wound assessment. The resulting extracted features can be easily interpreted by the clinician and allow a quantitative estimation of the PWAT scores. The features extracted from the region-of-interests detected by our pre-trained neural network model correctly predict the PWAT scale values with a Spearman's correlation coefficient of 0.85 on a set of unseen images. The obtained results agree with the current state-of-the-art and provide a benchmark for future artificial intelligence applications in this research field.
doi_str_mv 10.1007/s10916-023-02029-9
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10791717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2915569497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-b13a4e0b66fab47ded7f376369908e9c8feab60b67bb2006b54325ac2c4a09c13</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMotlb_gAsZcONmNI-ZpFlJKT4KBYtUdBcymUw7ZSapyYzgvzd9WKsLF5dcON89uZcDwDmC1whCduMR5IjGEJNQEPOYH4AuShmJaZ-_He71HXDi_QJCyCllx6BD-hgzRFAXPA_axtay0Xk0cTovVVNaE9kimsxtY2dOLuelil5ta_Jo4L32vtamiabWVlFpouHcWbMDRrWcaX8KjgpZeX22fXvg5f5uOnyMx08Po-FgHKsE0ybOEJGJhhmlhcwSluucFYRRQjmHfc1Vv9Ayo0FnWYYhpFmaEJxKhVUiIVeI9MDtxnfZZrXOVdjLyUosXVlL9ymsLMVvxZRzMbMfAkHGEUMsOFxtHZx9b7VvRF16patKGm1bLzBHaUp5wlfo5R90YVtnwn1rKkkwxzRQeEMpZ713uthtg6BYZSY2mYmQmVhnJngYuti_YzfyHVIAyAbwQTIz7X7-_sf2C0OXovE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915442926</pqid></control><display><type>article</type><title>Automated Prediction of Photographic Wound Assessment Tool in Chronic Wound Images</title><source>Springer Nature</source><creator>Curti, Nico ; Merli, Yuri ; Zengarini, Corrado ; Starace, Michela ; Rapparini, Luca ; Marcelli, Emanuela ; Carlini, Gianluca ; Buschi, Daniele ; Castellani, Gastone C. ; Piraccini, Bianca Maria ; Bianchi, Tommaso ; Giampieri, Enrico</creator><creatorcontrib>Curti, Nico ; Merli, Yuri ; Zengarini, Corrado ; Starace, Michela ; Rapparini, Luca ; Marcelli, Emanuela ; Carlini, Gianluca ; Buschi, Daniele ; Castellani, Gastone C. ; Piraccini, Bianca Maria ; Bianchi, Tommaso ; Giampieri, Enrico</creatorcontrib><description>Many automated approaches have been proposed in literature to quantify clinically relevant wound features based on image processing analysis, aiming at removing human subjectivity and accelerate clinical practice. In this work we present a fully automated image processing pipeline leveraging deep learning and a large wound segmentation dataset to perform wound detection and following prediction of the Photographic Wound Assessment Tool (PWAT), automatizing the clinical judgement of the adequate wound healing. Starting from images acquired by smartphone cameras, a series of textural and morphological features are extracted from the wound areas, aiming to mimic the typical clinical considerations for wound assessment. The resulting extracted features can be easily interpreted by the clinician and allow a quantitative estimation of the PWAT scores. The features extracted from the region-of-interests detected by our pre-trained neural network model correctly predict the PWAT scale values with a Spearman's correlation coefficient of 0.85 on a set of unseen images. The obtained results agree with the current state-of-the-art and provide a benchmark for future artificial intelligence applications in this research field.</description><identifier>ISSN: 1573-689X</identifier><identifier>ISSN: 0148-5598</identifier><identifier>EISSN: 1573-689X</identifier><identifier>DOI: 10.1007/s10916-023-02029-9</identifier><identifier>PMID: 38227131</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial intelligence ; Automation ; Clinical medicine ; Correlation coefficient ; Correlation coefficients ; Datasets ; Deep learning ; Dermatology ; Health Informatics ; Health Sciences ; Image acquisition ; Image processing ; Machine learning ; Medicine ; Medicine &amp; Public Health ; Morphology ; Neural networks ; Original Paper ; Smartphones ; Statistics for Life Sciences ; Subjectivity ; Ulcers ; Wound healing</subject><ispartof>Journal of medical systems, 2024-01, Vol.48 (1), p.14, Article 14</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c426t-b13a4e0b66fab47ded7f376369908e9c8feab60b67bb2006b54325ac2c4a09c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38227131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Curti, Nico</creatorcontrib><creatorcontrib>Merli, Yuri</creatorcontrib><creatorcontrib>Zengarini, Corrado</creatorcontrib><creatorcontrib>Starace, Michela</creatorcontrib><creatorcontrib>Rapparini, Luca</creatorcontrib><creatorcontrib>Marcelli, Emanuela</creatorcontrib><creatorcontrib>Carlini, Gianluca</creatorcontrib><creatorcontrib>Buschi, Daniele</creatorcontrib><creatorcontrib>Castellani, Gastone C.</creatorcontrib><creatorcontrib>Piraccini, Bianca Maria</creatorcontrib><creatorcontrib>Bianchi, Tommaso</creatorcontrib><creatorcontrib>Giampieri, Enrico</creatorcontrib><title>Automated Prediction of Photographic Wound Assessment Tool in Chronic Wound Images</title><title>Journal of medical systems</title><addtitle>J Med Syst</addtitle><addtitle>J Med Syst</addtitle><description>Many automated approaches have been proposed in literature to quantify clinically relevant wound features based on image processing analysis, aiming at removing human subjectivity and accelerate clinical practice. In this work we present a fully automated image processing pipeline leveraging deep learning and a large wound segmentation dataset to perform wound detection and following prediction of the Photographic Wound Assessment Tool (PWAT), automatizing the clinical judgement of the adequate wound healing. Starting from images acquired by smartphone cameras, a series of textural and morphological features are extracted from the wound areas, aiming to mimic the typical clinical considerations for wound assessment. The resulting extracted features can be easily interpreted by the clinician and allow a quantitative estimation of the PWAT scores. The features extracted from the region-of-interests detected by our pre-trained neural network model correctly predict the PWAT scale values with a Spearman's correlation coefficient of 0.85 on a set of unseen images. The obtained results agree with the current state-of-the-art and provide a benchmark for future artificial intelligence applications in this research field.</description><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Clinical medicine</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Dermatology</subject><subject>Health Informatics</subject><subject>Health Sciences</subject><subject>Image acquisition</subject><subject>Image processing</subject><subject>Machine learning</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Morphology</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Smartphones</subject><subject>Statistics for Life Sciences</subject><subject>Subjectivity</subject><subject>Ulcers</subject><subject>Wound healing</subject><issn>1573-689X</issn><issn>0148-5598</issn><issn>1573-689X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kUtLAzEUhYMotlb_gAsZcONmNI-ZpFlJKT4KBYtUdBcymUw7ZSapyYzgvzd9WKsLF5dcON89uZcDwDmC1whCduMR5IjGEJNQEPOYH4AuShmJaZ-_He71HXDi_QJCyCllx6BD-hgzRFAXPA_axtay0Xk0cTovVVNaE9kimsxtY2dOLuelil5ta_Jo4L32vtamiabWVlFpouHcWbMDRrWcaX8KjgpZeX22fXvg5f5uOnyMx08Po-FgHKsE0ybOEJGJhhmlhcwSluucFYRRQjmHfc1Vv9Ayo0FnWYYhpFmaEJxKhVUiIVeI9MDtxnfZZrXOVdjLyUosXVlL9ymsLMVvxZRzMbMfAkHGEUMsOFxtHZx9b7VvRF16patKGm1bLzBHaUp5wlfo5R90YVtnwn1rKkkwxzRQeEMpZ713uthtg6BYZSY2mYmQmVhnJngYuti_YzfyHVIAyAbwQTIz7X7-_sf2C0OXovE</recordid><startdate>20240116</startdate><enddate>20240116</enddate><creator>Curti, Nico</creator><creator>Merli, Yuri</creator><creator>Zengarini, Corrado</creator><creator>Starace, Michela</creator><creator>Rapparini, Luca</creator><creator>Marcelli, Emanuela</creator><creator>Carlini, Gianluca</creator><creator>Buschi, Daniele</creator><creator>Castellani, Gastone C.</creator><creator>Piraccini, Bianca Maria</creator><creator>Bianchi, Tommaso</creator><creator>Giampieri, Enrico</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240116</creationdate><title>Automated Prediction of Photographic Wound Assessment Tool in Chronic Wound Images</title><author>Curti, Nico ; Merli, Yuri ; Zengarini, Corrado ; Starace, Michela ; Rapparini, Luca ; Marcelli, Emanuela ; Carlini, Gianluca ; Buschi, Daniele ; Castellani, Gastone C. ; Piraccini, Bianca Maria ; Bianchi, Tommaso ; Giampieri, Enrico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-b13a4e0b66fab47ded7f376369908e9c8feab60b67bb2006b54325ac2c4a09c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Clinical medicine</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Dermatology</topic><topic>Health Informatics</topic><topic>Health Sciences</topic><topic>Image acquisition</topic><topic>Image processing</topic><topic>Machine learning</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Morphology</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Smartphones</topic><topic>Statistics for Life Sciences</topic><topic>Subjectivity</topic><topic>Ulcers</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Curti, Nico</creatorcontrib><creatorcontrib>Merli, Yuri</creatorcontrib><creatorcontrib>Zengarini, Corrado</creatorcontrib><creatorcontrib>Starace, Michela</creatorcontrib><creatorcontrib>Rapparini, Luca</creatorcontrib><creatorcontrib>Marcelli, Emanuela</creatorcontrib><creatorcontrib>Carlini, Gianluca</creatorcontrib><creatorcontrib>Buschi, Daniele</creatorcontrib><creatorcontrib>Castellani, Gastone C.</creatorcontrib><creatorcontrib>Piraccini, Bianca Maria</creatorcontrib><creatorcontrib>Bianchi, Tommaso</creatorcontrib><creatorcontrib>Giampieri, Enrico</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of medical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Curti, Nico</au><au>Merli, Yuri</au><au>Zengarini, Corrado</au><au>Starace, Michela</au><au>Rapparini, Luca</au><au>Marcelli, Emanuela</au><au>Carlini, Gianluca</au><au>Buschi, Daniele</au><au>Castellani, Gastone C.</au><au>Piraccini, Bianca Maria</au><au>Bianchi, Tommaso</au><au>Giampieri, Enrico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Prediction of Photographic Wound Assessment Tool in Chronic Wound Images</atitle><jtitle>Journal of medical systems</jtitle><stitle>J Med Syst</stitle><addtitle>J Med Syst</addtitle><date>2024-01-16</date><risdate>2024</risdate><volume>48</volume><issue>1</issue><spage>14</spage><pages>14-</pages><artnum>14</artnum><issn>1573-689X</issn><issn>0148-5598</issn><eissn>1573-689X</eissn><abstract>Many automated approaches have been proposed in literature to quantify clinically relevant wound features based on image processing analysis, aiming at removing human subjectivity and accelerate clinical practice. In this work we present a fully automated image processing pipeline leveraging deep learning and a large wound segmentation dataset to perform wound detection and following prediction of the Photographic Wound Assessment Tool (PWAT), automatizing the clinical judgement of the adequate wound healing. Starting from images acquired by smartphone cameras, a series of textural and morphological features are extracted from the wound areas, aiming to mimic the typical clinical considerations for wound assessment. The resulting extracted features can be easily interpreted by the clinician and allow a quantitative estimation of the PWAT scores. The features extracted from the region-of-interests detected by our pre-trained neural network model correctly predict the PWAT scale values with a Spearman's correlation coefficient of 0.85 on a set of unseen images. The obtained results agree with the current state-of-the-art and provide a benchmark for future artificial intelligence applications in this research field.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>38227131</pmid><doi>10.1007/s10916-023-02029-9</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1573-689X
ispartof Journal of medical systems, 2024-01, Vol.48 (1), p.14, Article 14
issn 1573-689X
0148-5598
1573-689X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10791717
source Springer Nature
subjects Artificial intelligence
Automation
Clinical medicine
Correlation coefficient
Correlation coefficients
Datasets
Deep learning
Dermatology
Health Informatics
Health Sciences
Image acquisition
Image processing
Machine learning
Medicine
Medicine & Public Health
Morphology
Neural networks
Original Paper
Smartphones
Statistics for Life Sciences
Subjectivity
Ulcers
Wound healing
title Automated Prediction of Photographic Wound Assessment Tool in Chronic Wound Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A10%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Prediction%20of%20Photographic%20Wound%20Assessment%20Tool%20in%20Chronic%20Wound%20Images&rft.jtitle=Journal%20of%20medical%20systems&rft.au=Curti,%20Nico&rft.date=2024-01-16&rft.volume=48&rft.issue=1&rft.spage=14&rft.pages=14-&rft.artnum=14&rft.issn=1573-689X&rft.eissn=1573-689X&rft_id=info:doi/10.1007/s10916-023-02029-9&rft_dat=%3Cproquest_pubme%3E2915569497%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-b13a4e0b66fab47ded7f376369908e9c8feab60b67bb2006b54325ac2c4a09c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2915442926&rft_id=info:pmid/38227131&rfr_iscdi=true