Loading…
Automated Prediction of Photographic Wound Assessment Tool in Chronic Wound Images
Many automated approaches have been proposed in literature to quantify clinically relevant wound features based on image processing analysis, aiming at removing human subjectivity and accelerate clinical practice. In this work we present a fully automated image processing pipeline leveraging deep le...
Saved in:
Published in: | Journal of medical systems 2024-01, Vol.48 (1), p.14, Article 14 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c426t-b13a4e0b66fab47ded7f376369908e9c8feab60b67bb2006b54325ac2c4a09c13 |
container_end_page | |
container_issue | 1 |
container_start_page | 14 |
container_title | Journal of medical systems |
container_volume | 48 |
creator | Curti, Nico Merli, Yuri Zengarini, Corrado Starace, Michela Rapparini, Luca Marcelli, Emanuela Carlini, Gianluca Buschi, Daniele Castellani, Gastone C. Piraccini, Bianca Maria Bianchi, Tommaso Giampieri, Enrico |
description | Many automated approaches have been proposed in literature to quantify clinically relevant wound features based on image processing analysis, aiming at removing human subjectivity and accelerate clinical practice. In this work we present a fully automated image processing pipeline leveraging deep learning and a large wound segmentation dataset to perform wound detection and following prediction of the Photographic Wound Assessment Tool (PWAT), automatizing the clinical judgement of the adequate wound healing. Starting from images acquired by smartphone cameras, a series of textural and morphological features are extracted from the wound areas, aiming to mimic the typical clinical considerations for wound assessment. The resulting extracted features can be easily interpreted by the clinician and allow a quantitative estimation of the PWAT scores. The features extracted from the region-of-interests detected by our pre-trained neural network model correctly predict the PWAT scale values with a Spearman's correlation coefficient of 0.85 on a set of unseen images. The obtained results agree with the current state-of-the-art and provide a benchmark for future artificial intelligence applications in this research field. |
doi_str_mv | 10.1007/s10916-023-02029-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10791717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2915569497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-b13a4e0b66fab47ded7f376369908e9c8feab60b67bb2006b54325ac2c4a09c13</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMotlb_gAsZcONmNI-ZpFlJKT4KBYtUdBcymUw7ZSapyYzgvzd9WKsLF5dcON89uZcDwDmC1whCduMR5IjGEJNQEPOYH4AuShmJaZ-_He71HXDi_QJCyCllx6BD-hgzRFAXPA_axtay0Xk0cTovVVNaE9kimsxtY2dOLuelil5ta_Jo4L32vtamiabWVlFpouHcWbMDRrWcaX8KjgpZeX22fXvg5f5uOnyMx08Po-FgHKsE0ybOEJGJhhmlhcwSluucFYRRQjmHfc1Vv9Ayo0FnWYYhpFmaEJxKhVUiIVeI9MDtxnfZZrXOVdjLyUosXVlL9ymsLMVvxZRzMbMfAkHGEUMsOFxtHZx9b7VvRF16patKGm1bLzBHaUp5wlfo5R90YVtnwn1rKkkwxzRQeEMpZ713uthtg6BYZSY2mYmQmVhnJngYuti_YzfyHVIAyAbwQTIz7X7-_sf2C0OXovE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915442926</pqid></control><display><type>article</type><title>Automated Prediction of Photographic Wound Assessment Tool in Chronic Wound Images</title><source>Springer Nature</source><creator>Curti, Nico ; Merli, Yuri ; Zengarini, Corrado ; Starace, Michela ; Rapparini, Luca ; Marcelli, Emanuela ; Carlini, Gianluca ; Buschi, Daniele ; Castellani, Gastone C. ; Piraccini, Bianca Maria ; Bianchi, Tommaso ; Giampieri, Enrico</creator><creatorcontrib>Curti, Nico ; Merli, Yuri ; Zengarini, Corrado ; Starace, Michela ; Rapparini, Luca ; Marcelli, Emanuela ; Carlini, Gianluca ; Buschi, Daniele ; Castellani, Gastone C. ; Piraccini, Bianca Maria ; Bianchi, Tommaso ; Giampieri, Enrico</creatorcontrib><description>Many automated approaches have been proposed in literature to quantify clinically relevant wound features based on image processing analysis, aiming at removing human subjectivity and accelerate clinical practice. In this work we present a fully automated image processing pipeline leveraging deep learning and a large wound segmentation dataset to perform wound detection and following prediction of the Photographic Wound Assessment Tool (PWAT), automatizing the clinical judgement of the adequate wound healing. Starting from images acquired by smartphone cameras, a series of textural and morphological features are extracted from the wound areas, aiming to mimic the typical clinical considerations for wound assessment. The resulting extracted features can be easily interpreted by the clinician and allow a quantitative estimation of the PWAT scores. The features extracted from the region-of-interests detected by our pre-trained neural network model correctly predict the PWAT scale values with a Spearman's correlation coefficient of 0.85 on a set of unseen images. The obtained results agree with the current state-of-the-art and provide a benchmark for future artificial intelligence applications in this research field.</description><identifier>ISSN: 1573-689X</identifier><identifier>ISSN: 0148-5598</identifier><identifier>EISSN: 1573-689X</identifier><identifier>DOI: 10.1007/s10916-023-02029-9</identifier><identifier>PMID: 38227131</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial intelligence ; Automation ; Clinical medicine ; Correlation coefficient ; Correlation coefficients ; Datasets ; Deep learning ; Dermatology ; Health Informatics ; Health Sciences ; Image acquisition ; Image processing ; Machine learning ; Medicine ; Medicine & Public Health ; Morphology ; Neural networks ; Original Paper ; Smartphones ; Statistics for Life Sciences ; Subjectivity ; Ulcers ; Wound healing</subject><ispartof>Journal of medical systems, 2024-01, Vol.48 (1), p.14, Article 14</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c426t-b13a4e0b66fab47ded7f376369908e9c8feab60b67bb2006b54325ac2c4a09c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38227131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Curti, Nico</creatorcontrib><creatorcontrib>Merli, Yuri</creatorcontrib><creatorcontrib>Zengarini, Corrado</creatorcontrib><creatorcontrib>Starace, Michela</creatorcontrib><creatorcontrib>Rapparini, Luca</creatorcontrib><creatorcontrib>Marcelli, Emanuela</creatorcontrib><creatorcontrib>Carlini, Gianluca</creatorcontrib><creatorcontrib>Buschi, Daniele</creatorcontrib><creatorcontrib>Castellani, Gastone C.</creatorcontrib><creatorcontrib>Piraccini, Bianca Maria</creatorcontrib><creatorcontrib>Bianchi, Tommaso</creatorcontrib><creatorcontrib>Giampieri, Enrico</creatorcontrib><title>Automated Prediction of Photographic Wound Assessment Tool in Chronic Wound Images</title><title>Journal of medical systems</title><addtitle>J Med Syst</addtitle><addtitle>J Med Syst</addtitle><description>Many automated approaches have been proposed in literature to quantify clinically relevant wound features based on image processing analysis, aiming at removing human subjectivity and accelerate clinical practice. In this work we present a fully automated image processing pipeline leveraging deep learning and a large wound segmentation dataset to perform wound detection and following prediction of the Photographic Wound Assessment Tool (PWAT), automatizing the clinical judgement of the adequate wound healing. Starting from images acquired by smartphone cameras, a series of textural and morphological features are extracted from the wound areas, aiming to mimic the typical clinical considerations for wound assessment. The resulting extracted features can be easily interpreted by the clinician and allow a quantitative estimation of the PWAT scores. The features extracted from the region-of-interests detected by our pre-trained neural network model correctly predict the PWAT scale values with a Spearman's correlation coefficient of 0.85 on a set of unseen images. The obtained results agree with the current state-of-the-art and provide a benchmark for future artificial intelligence applications in this research field.</description><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Clinical medicine</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Dermatology</subject><subject>Health Informatics</subject><subject>Health Sciences</subject><subject>Image acquisition</subject><subject>Image processing</subject><subject>Machine learning</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Morphology</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Smartphones</subject><subject>Statistics for Life Sciences</subject><subject>Subjectivity</subject><subject>Ulcers</subject><subject>Wound healing</subject><issn>1573-689X</issn><issn>0148-5598</issn><issn>1573-689X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kUtLAzEUhYMotlb_gAsZcONmNI-ZpFlJKT4KBYtUdBcymUw7ZSapyYzgvzd9WKsLF5dcON89uZcDwDmC1whCduMR5IjGEJNQEPOYH4AuShmJaZ-_He71HXDi_QJCyCllx6BD-hgzRFAXPA_axtay0Xk0cTovVVNaE9kimsxtY2dOLuelil5ta_Jo4L32vtamiabWVlFpouHcWbMDRrWcaX8KjgpZeX22fXvg5f5uOnyMx08Po-FgHKsE0ybOEJGJhhmlhcwSluucFYRRQjmHfc1Vv9Ayo0FnWYYhpFmaEJxKhVUiIVeI9MDtxnfZZrXOVdjLyUosXVlL9ymsLMVvxZRzMbMfAkHGEUMsOFxtHZx9b7VvRF16patKGm1bLzBHaUp5wlfo5R90YVtnwn1rKkkwxzRQeEMpZ713uthtg6BYZSY2mYmQmVhnJngYuti_YzfyHVIAyAbwQTIz7X7-_sf2C0OXovE</recordid><startdate>20240116</startdate><enddate>20240116</enddate><creator>Curti, Nico</creator><creator>Merli, Yuri</creator><creator>Zengarini, Corrado</creator><creator>Starace, Michela</creator><creator>Rapparini, Luca</creator><creator>Marcelli, Emanuela</creator><creator>Carlini, Gianluca</creator><creator>Buschi, Daniele</creator><creator>Castellani, Gastone C.</creator><creator>Piraccini, Bianca Maria</creator><creator>Bianchi, Tommaso</creator><creator>Giampieri, Enrico</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240116</creationdate><title>Automated Prediction of Photographic Wound Assessment Tool in Chronic Wound Images</title><author>Curti, Nico ; Merli, Yuri ; Zengarini, Corrado ; Starace, Michela ; Rapparini, Luca ; Marcelli, Emanuela ; Carlini, Gianluca ; Buschi, Daniele ; Castellani, Gastone C. ; Piraccini, Bianca Maria ; Bianchi, Tommaso ; Giampieri, Enrico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-b13a4e0b66fab47ded7f376369908e9c8feab60b67bb2006b54325ac2c4a09c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Clinical medicine</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Dermatology</topic><topic>Health Informatics</topic><topic>Health Sciences</topic><topic>Image acquisition</topic><topic>Image processing</topic><topic>Machine learning</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Morphology</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Smartphones</topic><topic>Statistics for Life Sciences</topic><topic>Subjectivity</topic><topic>Ulcers</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Curti, Nico</creatorcontrib><creatorcontrib>Merli, Yuri</creatorcontrib><creatorcontrib>Zengarini, Corrado</creatorcontrib><creatorcontrib>Starace, Michela</creatorcontrib><creatorcontrib>Rapparini, Luca</creatorcontrib><creatorcontrib>Marcelli, Emanuela</creatorcontrib><creatorcontrib>Carlini, Gianluca</creatorcontrib><creatorcontrib>Buschi, Daniele</creatorcontrib><creatorcontrib>Castellani, Gastone C.</creatorcontrib><creatorcontrib>Piraccini, Bianca Maria</creatorcontrib><creatorcontrib>Bianchi, Tommaso</creatorcontrib><creatorcontrib>Giampieri, Enrico</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of medical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Curti, Nico</au><au>Merli, Yuri</au><au>Zengarini, Corrado</au><au>Starace, Michela</au><au>Rapparini, Luca</au><au>Marcelli, Emanuela</au><au>Carlini, Gianluca</au><au>Buschi, Daniele</au><au>Castellani, Gastone C.</au><au>Piraccini, Bianca Maria</au><au>Bianchi, Tommaso</au><au>Giampieri, Enrico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Prediction of Photographic Wound Assessment Tool in Chronic Wound Images</atitle><jtitle>Journal of medical systems</jtitle><stitle>J Med Syst</stitle><addtitle>J Med Syst</addtitle><date>2024-01-16</date><risdate>2024</risdate><volume>48</volume><issue>1</issue><spage>14</spage><pages>14-</pages><artnum>14</artnum><issn>1573-689X</issn><issn>0148-5598</issn><eissn>1573-689X</eissn><abstract>Many automated approaches have been proposed in literature to quantify clinically relevant wound features based on image processing analysis, aiming at removing human subjectivity and accelerate clinical practice. In this work we present a fully automated image processing pipeline leveraging deep learning and a large wound segmentation dataset to perform wound detection and following prediction of the Photographic Wound Assessment Tool (PWAT), automatizing the clinical judgement of the adequate wound healing. Starting from images acquired by smartphone cameras, a series of textural and morphological features are extracted from the wound areas, aiming to mimic the typical clinical considerations for wound assessment. The resulting extracted features can be easily interpreted by the clinician and allow a quantitative estimation of the PWAT scores. The features extracted from the region-of-interests detected by our pre-trained neural network model correctly predict the PWAT scale values with a Spearman's correlation coefficient of 0.85 on a set of unseen images. The obtained results agree with the current state-of-the-art and provide a benchmark for future artificial intelligence applications in this research field.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>38227131</pmid><doi>10.1007/s10916-023-02029-9</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1573-689X |
ispartof | Journal of medical systems, 2024-01, Vol.48 (1), p.14, Article 14 |
issn | 1573-689X 0148-5598 1573-689X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10791717 |
source | Springer Nature |
subjects | Artificial intelligence Automation Clinical medicine Correlation coefficient Correlation coefficients Datasets Deep learning Dermatology Health Informatics Health Sciences Image acquisition Image processing Machine learning Medicine Medicine & Public Health Morphology Neural networks Original Paper Smartphones Statistics for Life Sciences Subjectivity Ulcers Wound healing |
title | Automated Prediction of Photographic Wound Assessment Tool in Chronic Wound Images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A10%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Prediction%20of%20Photographic%20Wound%20Assessment%20Tool%20in%20Chronic%20Wound%20Images&rft.jtitle=Journal%20of%20medical%20systems&rft.au=Curti,%20Nico&rft.date=2024-01-16&rft.volume=48&rft.issue=1&rft.spage=14&rft.pages=14-&rft.artnum=14&rft.issn=1573-689X&rft.eissn=1573-689X&rft_id=info:doi/10.1007/s10916-023-02029-9&rft_dat=%3Cproquest_pubme%3E2915569497%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-b13a4e0b66fab47ded7f376369908e9c8feab60b67bb2006b54325ac2c4a09c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2915442926&rft_id=info:pmid/38227131&rfr_iscdi=true |