Loading…
Antibacterial Activity of Green Synthesized Silver Nanoparticles Using Lawsonia inermis Against Common Pathogens from Urinary Tract Infection
New and creative methodologies for the fabrication of silver nanoparticles (Ag-NPs), which are exploited in a wide range of consumer items, are of significant interest. Hence, this research emphasizes the biological approach of Ag-NPs through Egyptian henna leaves ( Lawsonia inermis Linn.) extracts...
Saved in:
Published in: | Applied biochemistry and biotechnology 2024-01, Vol.196 (1), p.85-98 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | New and creative methodologies for the fabrication of silver nanoparticles (Ag-NPs), which are exploited in a wide range of consumer items, are of significant interest. Hence, this research emphasizes the biological approach of Ag-NPs through Egyptian henna leaves (
Lawsonia inermis
Linn.) extracts and analysis of the prepared Ag-NPs. Plant extract components were identified by gas chromatography mass spectrometry (GC-mass). The analyses of prepared Ag-NPs were carried out through UV–visible (UV–Vis), X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and Fourier transform infrared (FTIR) analysis. UV–Vis reveals that Ag-NPs have a maximum peak at 460 nm in visible light. Structural characterization recorded peaks that corresponded to Bragg’s diffractions for silver nano-crystal, with average crystallite sizes varying from 28 to 60 nm. Antibacterial activities of Ag-NPs were examined, and it is observed that all microorganisms are very sensitive to biologically synthesized Ag-NPs. |
---|---|
ISSN: | 0273-2289 1559-0291 |
DOI: | 10.1007/s12010-023-04482-1 |