Loading…

Impact of perfluoroalkyl substances (PFAS) and PFAS mixtures on lipid metabolism in differentiated HepaRG cells as a model for human hepatocytes

Per- and polyfluoroalkyl substances (PFAS) are environmental contaminants with various adverse health effects in humans including disruption of lipid metabolism. Aim of the present study was to elucidate the molecular mechanisms of PFAS-mediated effects on lipid metabolism in human cells. Here, we e...

Full description

Saved in:
Bibliographic Details
Published in:Archives of toxicology 2024-02, Vol.98 (2), p.507-524
Main Authors: Sadrabadi, Faezeh, Alarcan, Jimmy, Sprenger, Heike, Braeuning, Albert, Buhrke, Thorsten
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Per- and polyfluoroalkyl substances (PFAS) are environmental contaminants with various adverse health effects in humans including disruption of lipid metabolism. Aim of the present study was to elucidate the molecular mechanisms of PFAS-mediated effects on lipid metabolism in human cells. Here, we examined the impact of a number of PFAS (PFOS, PFOA, PFNA, PFDA, PFHxA, PFBA, PFHxS, PFBS, HFPO-DA, and PMPP) and of some exposure-relevant PFAS mixtures being composed of PFOS, PFOA, PFNA and PFHxS on lipid metabolism in human HepaRG cells, an in vitro model for human hepatocytes. At near cytotoxic concentrations, the selected PFAS and PFAS mixtures induced triglyceride accumulation in HepaRG cells and consistently affected the expression of marker genes for steatosis, as well as PPARα target genes and genes related to lipid and cholesterol metabolism, pointing to common molecular mechanisms of PFAS in disrupting cellular lipid and cholesterol homeostasis. PPARα activation was examined by a transactivation assay in HEK293T cells, and synergistic effects were observed for the selected PFAS mixtures at sum concentrations higher than 25 µM, whereas additivity was observed at sum concentrations lower than 25 µM. Of note, any effect observed in the in vitro assays occurred at PFAS concentrations that were at least four to five magnitudes above real-life internal exposure levels of the general population.
ISSN:0340-5761
1432-0738
1432-0738
DOI:10.1007/s00204-023-03649-3