Loading…
Oxygen-sensing pathways below autoregulatory threshold act to sustain myocardial oxygen delivery during reductions in perfusion pressure
The coronary circulation has an innate ability to maintain constant blood flow over a wide range of perfusion pressures. However, the mechanisms responsible for coronary autoregulation remain a fundamental and highly contested question. This study interrogated the local metabolic hypothesis of autor...
Saved in:
Published in: | Basic research in cardiology 2023-03, Vol.118 (1), p.12-12, Article 12 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The coronary circulation has an innate ability to maintain constant blood flow over a wide range of perfusion pressures. However, the mechanisms responsible for coronary autoregulation remain a fundamental and highly contested question. This study interrogated the local metabolic hypothesis of autoregulation by testing the hypothesis that hypoxemia-induced exaggeration of the metabolic error signal improves the autoregulatory response. Experiments were performed on open-chest anesthetized swine during stepwise changes in coronary perfusion pressure (CPP) from 140 to 40 mmHg under normoxic (n = 15) and hypoxemic (n = 8) conditions, in the absence and presence of dobutamine-induced increases in myocardial oxygen consumption (MVO
2
) (n = 5–7). Hypoxemia (PaO
2
|
---|---|
ISSN: | 1435-1803 0300-8428 1435-1803 |
DOI: | 10.1007/s00395-023-00985-4 |