Loading…
Machine learning and deep learning for brain tumor MRI image segmentation
Brain tumors are often fatal. Therefore, accurate brain tumor image segmentation is critical for the diagnosis, treatment, and monitoring of patients with these tumors. Magnetic resonance imaging (MRI) is a commonly used imaging technique for capturing brain images. Both machine learning and deep le...
Saved in:
Published in: | Experimental Biology and Medicine 2023-11, Vol.248 (21), p.1974-1992 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c439t-205debea1fee34ad2255d2d705cca62e11fe323503f03c14c2edcb562f3e4bee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c439t-205debea1fee34ad2255d2d705cca62e11fe323503f03c14c2edcb562f3e4bee3 |
container_end_page | 1992 |
container_issue | 21 |
container_start_page | 1974 |
container_title | Experimental Biology and Medicine |
container_volume | 248 |
creator | Khan, Md Kamrul Hasan Guo, Wenjing Liu, Jie Dong, Fan Li, Zoe Patterson, Tucker A Hong, Huixiao |
description | Brain tumors are often fatal. Therefore, accurate brain tumor image segmentation is critical for the diagnosis, treatment, and monitoring of patients with these tumors. Magnetic resonance imaging (MRI) is a commonly used imaging technique for capturing brain images. Both machine learning and deep learning techniques are popular in analyzing MRI images. This article reviews some commonly used machine learning and deep learning techniques for brain tumor MRI image segmentation. The limitations and advantages of the reviewed machine learning and deep learning methods are discussed. Even though each of these methods has a well-established status in their individual domains, the combination of two or more techniques is currently an emerging trend. |
doi_str_mv | 10.1177/15353702231214259 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10798183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_15353702231214259</sage_id><sourcerecordid>2902938969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-205debea1fee34ad2255d2d705cca62e11fe323503f03c14c2edcb562f3e4bee3</originalsourceid><addsrcrecordid>eNp9UUtLw0AQXkSxtfoDvEiOXlL3kU26J5Hio9AiiJ6XzWaSbkk2dTcR_Pdu6UNF8DTDfI8ZvkHokuAxIVl2QzjjLMOUMkJJQrk4QsPNLGapEMf7PhAG6Mz7FcaEZzQ9RQM2IZgKng7RbKH00liIalDOGltFyhZRAbD-npSti3KnjI26vgn94mUWmUZVEHmoGrCd6kxrz9FJqWoPF7s6Qm8P96_Tp3j-_Dib3s1jnTDRxRTzAnJQpARgiSoo5bygRYa51iqlQALAKOOYlZhpkmgKhc55SksGSR40I3S79V33eROwsN-pWq5dOMl9ylYZ-RuxZimr9kMSnIkJmbDgcL1zcO17D76TjfEa6lpZaHsvqQjhsIlIRaCSLVW71nsH5WEPwXLzA_nnB0Fz9fPAg2IfeiCMtwQfMpSrtnc2BPaP4xeFZY_v</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902938969</pqid></control><display><type>article</type><title>Machine learning and deep learning for brain tumor MRI image segmentation</title><source>PubMed Central(OpenAccess)</source><creator>Khan, Md Kamrul Hasan ; Guo, Wenjing ; Liu, Jie ; Dong, Fan ; Li, Zoe ; Patterson, Tucker A ; Hong, Huixiao</creator><creatorcontrib>Khan, Md Kamrul Hasan ; Guo, Wenjing ; Liu, Jie ; Dong, Fan ; Li, Zoe ; Patterson, Tucker A ; Hong, Huixiao</creatorcontrib><description>Brain tumors are often fatal. Therefore, accurate brain tumor image segmentation is critical for the diagnosis, treatment, and monitoring of patients with these tumors. Magnetic resonance imaging (MRI) is a commonly used imaging technique for capturing brain images. Both machine learning and deep learning techniques are popular in analyzing MRI images. This article reviews some commonly used machine learning and deep learning techniques for brain tumor MRI image segmentation. The limitations and advantages of the reviewed machine learning and deep learning methods are discussed. Even though each of these methods has a well-established status in their individual domains, the combination of two or more techniques is currently an emerging trend.</description><identifier>ISSN: 1535-3702</identifier><identifier>EISSN: 1535-3699</identifier><identifier>DOI: 10.1177/15353702231214259</identifier><identifier>PMID: 38102956</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Brain - diagnostic imaging ; Brain - pathology ; Brain Neoplasms - diagnostic imaging ; Deep Learning ; Humans ; Image Processing, Computer-Assisted - methods ; Machine Learning ; Magnetic Resonance Imaging - methods ; Minireview</subject><ispartof>Experimental Biology and Medicine, 2023-11, Vol.248 (21), p.1974-1992</ispartof><rights>2023 by the Society for Experimental Biology and Medicine</rights><rights>2023 by the Society for Experimental Biology and Medicine 2023 The Society for Experimental Biology and Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-205debea1fee34ad2255d2d705cca62e11fe323503f03c14c2edcb562f3e4bee3</citedby><cites>FETCH-LOGICAL-c439t-205debea1fee34ad2255d2d705cca62e11fe323503f03c14c2edcb562f3e4bee3</cites><orcidid>0000-0001-8087-3968 ; 0009-0004-9835-5594 ; 0000-0001-6988-5773 ; 0000-0002-0814-6982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10798183/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10798183/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,313,314,727,780,784,792,885,27922,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38102956$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khan, Md Kamrul Hasan</creatorcontrib><creatorcontrib>Guo, Wenjing</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Dong, Fan</creatorcontrib><creatorcontrib>Li, Zoe</creatorcontrib><creatorcontrib>Patterson, Tucker A</creatorcontrib><creatorcontrib>Hong, Huixiao</creatorcontrib><title>Machine learning and deep learning for brain tumor MRI image segmentation</title><title>Experimental Biology and Medicine</title><addtitle>Exp Biol Med (Maywood)</addtitle><description>Brain tumors are often fatal. Therefore, accurate brain tumor image segmentation is critical for the diagnosis, treatment, and monitoring of patients with these tumors. Magnetic resonance imaging (MRI) is a commonly used imaging technique for capturing brain images. Both machine learning and deep learning techniques are popular in analyzing MRI images. This article reviews some commonly used machine learning and deep learning techniques for brain tumor MRI image segmentation. The limitations and advantages of the reviewed machine learning and deep learning methods are discussed. Even though each of these methods has a well-established status in their individual domains, the combination of two or more techniques is currently an emerging trend.</description><subject>Algorithms</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - pathology</subject><subject>Brain Neoplasms - diagnostic imaging</subject><subject>Deep Learning</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Machine Learning</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Minireview</subject><issn>1535-3702</issn><issn>1535-3699</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UUtLw0AQXkSxtfoDvEiOXlL3kU26J5Hio9AiiJ6XzWaSbkk2dTcR_Pdu6UNF8DTDfI8ZvkHokuAxIVl2QzjjLMOUMkJJQrk4QsPNLGapEMf7PhAG6Mz7FcaEZzQ9RQM2IZgKng7RbKH00liIalDOGltFyhZRAbD-npSti3KnjI26vgn94mUWmUZVEHmoGrCd6kxrz9FJqWoPF7s6Qm8P96_Tp3j-_Dib3s1jnTDRxRTzAnJQpARgiSoo5bygRYa51iqlQALAKOOYlZhpkmgKhc55SksGSR40I3S79V33eROwsN-pWq5dOMl9ylYZ-RuxZimr9kMSnIkJmbDgcL1zcO17D76TjfEa6lpZaHsvqQjhsIlIRaCSLVW71nsH5WEPwXLzA_nnB0Fz9fPAg2IfeiCMtwQfMpSrtnc2BPaP4xeFZY_v</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Khan, Md Kamrul Hasan</creator><creator>Guo, Wenjing</creator><creator>Liu, Jie</creator><creator>Dong, Fan</creator><creator>Li, Zoe</creator><creator>Patterson, Tucker A</creator><creator>Hong, Huixiao</creator><general>SAGE Publications</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8087-3968</orcidid><orcidid>https://orcid.org/0009-0004-9835-5594</orcidid><orcidid>https://orcid.org/0000-0001-6988-5773</orcidid><orcidid>https://orcid.org/0000-0002-0814-6982</orcidid></search><sort><creationdate>20231101</creationdate><title>Machine learning and deep learning for brain tumor MRI image segmentation</title><author>Khan, Md Kamrul Hasan ; Guo, Wenjing ; Liu, Jie ; Dong, Fan ; Li, Zoe ; Patterson, Tucker A ; Hong, Huixiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-205debea1fee34ad2255d2d705cca62e11fe323503f03c14c2edcb562f3e4bee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - pathology</topic><topic>Brain Neoplasms - diagnostic imaging</topic><topic>Deep Learning</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Machine Learning</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Minireview</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Md Kamrul Hasan</creatorcontrib><creatorcontrib>Guo, Wenjing</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Dong, Fan</creatorcontrib><creatorcontrib>Li, Zoe</creatorcontrib><creatorcontrib>Patterson, Tucker A</creatorcontrib><creatorcontrib>Hong, Huixiao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Experimental Biology and Medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Md Kamrul Hasan</au><au>Guo, Wenjing</au><au>Liu, Jie</au><au>Dong, Fan</au><au>Li, Zoe</au><au>Patterson, Tucker A</au><au>Hong, Huixiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning and deep learning for brain tumor MRI image segmentation</atitle><jtitle>Experimental Biology and Medicine</jtitle><addtitle>Exp Biol Med (Maywood)</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>248</volume><issue>21</issue><spage>1974</spage><epage>1992</epage><pages>1974-1992</pages><issn>1535-3702</issn><eissn>1535-3699</eissn><abstract>Brain tumors are often fatal. Therefore, accurate brain tumor image segmentation is critical for the diagnosis, treatment, and monitoring of patients with these tumors. Magnetic resonance imaging (MRI) is a commonly used imaging technique for capturing brain images. Both machine learning and deep learning techniques are popular in analyzing MRI images. This article reviews some commonly used machine learning and deep learning techniques for brain tumor MRI image segmentation. The limitations and advantages of the reviewed machine learning and deep learning methods are discussed. Even though each of these methods has a well-established status in their individual domains, the combination of two or more techniques is currently an emerging trend.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>38102956</pmid><doi>10.1177/15353702231214259</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8087-3968</orcidid><orcidid>https://orcid.org/0009-0004-9835-5594</orcidid><orcidid>https://orcid.org/0000-0001-6988-5773</orcidid><orcidid>https://orcid.org/0000-0002-0814-6982</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1535-3702 |
ispartof | Experimental Biology and Medicine, 2023-11, Vol.248 (21), p.1974-1992 |
issn | 1535-3702 1535-3699 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10798183 |
source | PubMed Central(OpenAccess) |
subjects | Algorithms Brain - diagnostic imaging Brain - pathology Brain Neoplasms - diagnostic imaging Deep Learning Humans Image Processing, Computer-Assisted - methods Machine Learning Magnetic Resonance Imaging - methods Minireview |
title | Machine learning and deep learning for brain tumor MRI image segmentation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A24%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20and%20deep%20learning%20for%20brain%20tumor%20MRI%20image%20segmentation&rft.jtitle=Experimental%20Biology%20and%20Medicine&rft.au=Khan,%20Md%20Kamrul%20Hasan&rft.date=2023-11-01&rft.volume=248&rft.issue=21&rft.spage=1974&rft.epage=1992&rft.pages=1974-1992&rft.issn=1535-3702&rft.eissn=1535-3699&rft_id=info:doi/10.1177/15353702231214259&rft_dat=%3Cproquest_pubme%3E2902938969%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-205debea1fee34ad2255d2d705cca62e11fe323503f03c14c2edcb562f3e4bee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2902938969&rft_id=info:pmid/38102956&rft_sage_id=10.1177_15353702231214259&rfr_iscdi=true |