Loading…

Machine learning and deep learning for brain tumor MRI image segmentation

Brain tumors are often fatal. Therefore, accurate brain tumor image segmentation is critical for the diagnosis, treatment, and monitoring of patients with these tumors. Magnetic resonance imaging (MRI) is a commonly used imaging technique for capturing brain images. Both machine learning and deep le...

Full description

Saved in:
Bibliographic Details
Published in:Experimental Biology and Medicine 2023-11, Vol.248 (21), p.1974-1992
Main Authors: Khan, Md Kamrul Hasan, Guo, Wenjing, Liu, Jie, Dong, Fan, Li, Zoe, Patterson, Tucker A, Hong, Huixiao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c439t-205debea1fee34ad2255d2d705cca62e11fe323503f03c14c2edcb562f3e4bee3
cites cdi_FETCH-LOGICAL-c439t-205debea1fee34ad2255d2d705cca62e11fe323503f03c14c2edcb562f3e4bee3
container_end_page 1992
container_issue 21
container_start_page 1974
container_title Experimental Biology and Medicine
container_volume 248
creator Khan, Md Kamrul Hasan
Guo, Wenjing
Liu, Jie
Dong, Fan
Li, Zoe
Patterson, Tucker A
Hong, Huixiao
description Brain tumors are often fatal. Therefore, accurate brain tumor image segmentation is critical for the diagnosis, treatment, and monitoring of patients with these tumors. Magnetic resonance imaging (MRI) is a commonly used imaging technique for capturing brain images. Both machine learning and deep learning techniques are popular in analyzing MRI images. This article reviews some commonly used machine learning and deep learning techniques for brain tumor MRI image segmentation. The limitations and advantages of the reviewed machine learning and deep learning methods are discussed. Even though each of these methods has a well-established status in their individual domains, the combination of two or more techniques is currently an emerging trend.
doi_str_mv 10.1177/15353702231214259
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10798183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_15353702231214259</sage_id><sourcerecordid>2902938969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-205debea1fee34ad2255d2d705cca62e11fe323503f03c14c2edcb562f3e4bee3</originalsourceid><addsrcrecordid>eNp9UUtLw0AQXkSxtfoDvEiOXlL3kU26J5Hio9AiiJ6XzWaSbkk2dTcR_Pdu6UNF8DTDfI8ZvkHokuAxIVl2QzjjLMOUMkJJQrk4QsPNLGapEMf7PhAG6Mz7FcaEZzQ9RQM2IZgKng7RbKH00liIalDOGltFyhZRAbD-npSti3KnjI26vgn94mUWmUZVEHmoGrCd6kxrz9FJqWoPF7s6Qm8P96_Tp3j-_Dib3s1jnTDRxRTzAnJQpARgiSoo5bygRYa51iqlQALAKOOYlZhpkmgKhc55SksGSR40I3S79V33eROwsN-pWq5dOMl9ylYZ-RuxZimr9kMSnIkJmbDgcL1zcO17D76TjfEa6lpZaHsvqQjhsIlIRaCSLVW71nsH5WEPwXLzA_nnB0Fz9fPAg2IfeiCMtwQfMpSrtnc2BPaP4xeFZY_v</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902938969</pqid></control><display><type>article</type><title>Machine learning and deep learning for brain tumor MRI image segmentation</title><source>PubMed Central(OpenAccess)</source><creator>Khan, Md Kamrul Hasan ; Guo, Wenjing ; Liu, Jie ; Dong, Fan ; Li, Zoe ; Patterson, Tucker A ; Hong, Huixiao</creator><creatorcontrib>Khan, Md Kamrul Hasan ; Guo, Wenjing ; Liu, Jie ; Dong, Fan ; Li, Zoe ; Patterson, Tucker A ; Hong, Huixiao</creatorcontrib><description>Brain tumors are often fatal. Therefore, accurate brain tumor image segmentation is critical for the diagnosis, treatment, and monitoring of patients with these tumors. Magnetic resonance imaging (MRI) is a commonly used imaging technique for capturing brain images. Both machine learning and deep learning techniques are popular in analyzing MRI images. This article reviews some commonly used machine learning and deep learning techniques for brain tumor MRI image segmentation. The limitations and advantages of the reviewed machine learning and deep learning methods are discussed. Even though each of these methods has a well-established status in their individual domains, the combination of two or more techniques is currently an emerging trend.</description><identifier>ISSN: 1535-3702</identifier><identifier>EISSN: 1535-3699</identifier><identifier>DOI: 10.1177/15353702231214259</identifier><identifier>PMID: 38102956</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Brain - diagnostic imaging ; Brain - pathology ; Brain Neoplasms - diagnostic imaging ; Deep Learning ; Humans ; Image Processing, Computer-Assisted - methods ; Machine Learning ; Magnetic Resonance Imaging - methods ; Minireview</subject><ispartof>Experimental Biology and Medicine, 2023-11, Vol.248 (21), p.1974-1992</ispartof><rights>2023 by the Society for Experimental Biology and Medicine</rights><rights>2023 by the Society for Experimental Biology and Medicine 2023 The Society for Experimental Biology and Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-205debea1fee34ad2255d2d705cca62e11fe323503f03c14c2edcb562f3e4bee3</citedby><cites>FETCH-LOGICAL-c439t-205debea1fee34ad2255d2d705cca62e11fe323503f03c14c2edcb562f3e4bee3</cites><orcidid>0000-0001-8087-3968 ; 0009-0004-9835-5594 ; 0000-0001-6988-5773 ; 0000-0002-0814-6982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10798183/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10798183/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,313,314,727,780,784,792,885,27922,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38102956$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khan, Md Kamrul Hasan</creatorcontrib><creatorcontrib>Guo, Wenjing</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Dong, Fan</creatorcontrib><creatorcontrib>Li, Zoe</creatorcontrib><creatorcontrib>Patterson, Tucker A</creatorcontrib><creatorcontrib>Hong, Huixiao</creatorcontrib><title>Machine learning and deep learning for brain tumor MRI image segmentation</title><title>Experimental Biology and Medicine</title><addtitle>Exp Biol Med (Maywood)</addtitle><description>Brain tumors are often fatal. Therefore, accurate brain tumor image segmentation is critical for the diagnosis, treatment, and monitoring of patients with these tumors. Magnetic resonance imaging (MRI) is a commonly used imaging technique for capturing brain images. Both machine learning and deep learning techniques are popular in analyzing MRI images. This article reviews some commonly used machine learning and deep learning techniques for brain tumor MRI image segmentation. The limitations and advantages of the reviewed machine learning and deep learning methods are discussed. Even though each of these methods has a well-established status in their individual domains, the combination of two or more techniques is currently an emerging trend.</description><subject>Algorithms</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - pathology</subject><subject>Brain Neoplasms - diagnostic imaging</subject><subject>Deep Learning</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Machine Learning</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Minireview</subject><issn>1535-3702</issn><issn>1535-3699</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UUtLw0AQXkSxtfoDvEiOXlL3kU26J5Hio9AiiJ6XzWaSbkk2dTcR_Pdu6UNF8DTDfI8ZvkHokuAxIVl2QzjjLMOUMkJJQrk4QsPNLGapEMf7PhAG6Mz7FcaEZzQ9RQM2IZgKng7RbKH00liIalDOGltFyhZRAbD-npSti3KnjI26vgn94mUWmUZVEHmoGrCd6kxrz9FJqWoPF7s6Qm8P96_Tp3j-_Dib3s1jnTDRxRTzAnJQpARgiSoo5bygRYa51iqlQALAKOOYlZhpkmgKhc55SksGSR40I3S79V33eROwsN-pWq5dOMl9ylYZ-RuxZimr9kMSnIkJmbDgcL1zcO17D76TjfEa6lpZaHsvqQjhsIlIRaCSLVW71nsH5WEPwXLzA_nnB0Fz9fPAg2IfeiCMtwQfMpSrtnc2BPaP4xeFZY_v</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Khan, Md Kamrul Hasan</creator><creator>Guo, Wenjing</creator><creator>Liu, Jie</creator><creator>Dong, Fan</creator><creator>Li, Zoe</creator><creator>Patterson, Tucker A</creator><creator>Hong, Huixiao</creator><general>SAGE Publications</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8087-3968</orcidid><orcidid>https://orcid.org/0009-0004-9835-5594</orcidid><orcidid>https://orcid.org/0000-0001-6988-5773</orcidid><orcidid>https://orcid.org/0000-0002-0814-6982</orcidid></search><sort><creationdate>20231101</creationdate><title>Machine learning and deep learning for brain tumor MRI image segmentation</title><author>Khan, Md Kamrul Hasan ; Guo, Wenjing ; Liu, Jie ; Dong, Fan ; Li, Zoe ; Patterson, Tucker A ; Hong, Huixiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-205debea1fee34ad2255d2d705cca62e11fe323503f03c14c2edcb562f3e4bee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - pathology</topic><topic>Brain Neoplasms - diagnostic imaging</topic><topic>Deep Learning</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Machine Learning</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Minireview</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Md Kamrul Hasan</creatorcontrib><creatorcontrib>Guo, Wenjing</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Dong, Fan</creatorcontrib><creatorcontrib>Li, Zoe</creatorcontrib><creatorcontrib>Patterson, Tucker A</creatorcontrib><creatorcontrib>Hong, Huixiao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Experimental Biology and Medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Md Kamrul Hasan</au><au>Guo, Wenjing</au><au>Liu, Jie</au><au>Dong, Fan</au><au>Li, Zoe</au><au>Patterson, Tucker A</au><au>Hong, Huixiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning and deep learning for brain tumor MRI image segmentation</atitle><jtitle>Experimental Biology and Medicine</jtitle><addtitle>Exp Biol Med (Maywood)</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>248</volume><issue>21</issue><spage>1974</spage><epage>1992</epage><pages>1974-1992</pages><issn>1535-3702</issn><eissn>1535-3699</eissn><abstract>Brain tumors are often fatal. Therefore, accurate brain tumor image segmentation is critical for the diagnosis, treatment, and monitoring of patients with these tumors. Magnetic resonance imaging (MRI) is a commonly used imaging technique for capturing brain images. Both machine learning and deep learning techniques are popular in analyzing MRI images. This article reviews some commonly used machine learning and deep learning techniques for brain tumor MRI image segmentation. The limitations and advantages of the reviewed machine learning and deep learning methods are discussed. Even though each of these methods has a well-established status in their individual domains, the combination of two or more techniques is currently an emerging trend.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>38102956</pmid><doi>10.1177/15353702231214259</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8087-3968</orcidid><orcidid>https://orcid.org/0009-0004-9835-5594</orcidid><orcidid>https://orcid.org/0000-0001-6988-5773</orcidid><orcidid>https://orcid.org/0000-0002-0814-6982</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1535-3702
ispartof Experimental Biology and Medicine, 2023-11, Vol.248 (21), p.1974-1992
issn 1535-3702
1535-3699
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10798183
source PubMed Central(OpenAccess)
subjects Algorithms
Brain - diagnostic imaging
Brain - pathology
Brain Neoplasms - diagnostic imaging
Deep Learning
Humans
Image Processing, Computer-Assisted - methods
Machine Learning
Magnetic Resonance Imaging - methods
Minireview
title Machine learning and deep learning for brain tumor MRI image segmentation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A24%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20and%20deep%20learning%20for%20brain%20tumor%20MRI%20image%20segmentation&rft.jtitle=Experimental%20Biology%20and%20Medicine&rft.au=Khan,%20Md%20Kamrul%20Hasan&rft.date=2023-11-01&rft.volume=248&rft.issue=21&rft.spage=1974&rft.epage=1992&rft.pages=1974-1992&rft.issn=1535-3702&rft.eissn=1535-3699&rft_id=info:doi/10.1177/15353702231214259&rft_dat=%3Cproquest_pubme%3E2902938969%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-205debea1fee34ad2255d2d705cca62e11fe323503f03c14c2edcb562f3e4bee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2902938969&rft_id=info:pmid/38102956&rft_sage_id=10.1177_15353702231214259&rfr_iscdi=true