Loading…

Efr3b is essential for social recognition by modulating the excitability of CA2 pyramidal neurons

CA2 pyramidal neurons (PNs) are associated with social behaviors. The mechanisms, however, remain to be fully investigated. Here, we report that Efr3b, a protein essential for phospholipid metabolism at the plasma membrane, is widely expressed in the brain, especially in the hippocampal CA2/CA3 area...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2024-01, Vol.121 (3), p.e2314557121
Main Authors: Wei, Xiaojie, Wang, Jing, Yang, Enlu, Zhang, Yiping, Qian, Qi, Li, Xuekun, Huang, Fude, Sun, Binggui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:CA2 pyramidal neurons (PNs) are associated with social behaviors. The mechanisms, however, remain to be fully investigated. Here, we report that Efr3b, a protein essential for phospholipid metabolism at the plasma membrane, is widely expressed in the brain, especially in the hippocampal CA2/CA3 areas. To assess the functional significance of Efr3b in the brain, we generated Efr3b mice and crossed them with Nestin-cre mice to delete Efr3b specifically in the brain. We find that Efr3b deficiency in the brain leads to deficits of social novelty recognition and hypoexcitability of CA2 PNs. We then knocked down the expression of Efr3b specifically in CA2 PNs of C57BL/6J mice, and our results showed that reducing Efr3b in CA2 PNs also resulted in deficits of social novelty recognition and hypoexcitability of CA2 PNs. More interestingly, restoring the expression of Efr3b in CA2 PNs enhances their excitability and improves social novelty recognition in Efr3b-deficient mice. Furthermore, direct activation of CA2 PNs with chemogenetics improves social behaviors in Efr3b-deficient mice. Together, our data suggest that Efr3b is essential for social novelty by modulating the excitability of CA2 PNs.
ISSN:0027-8424
1091-6490
1091-6490
DOI:10.1073/pnas.2314557121