Loading…
Characterization of the Entner-Doudoroff pathway in Pseudomonas aeruginosa catheter-associated urinary tract infections
is an opportunistic nosocomial pathogen responsible for a subset of catheter-associated urinary tract infections (CAUTI). In a murine model of CAUTI, we previously demonstrated that urea within urine suppresses quorum sensing and induces the Entner-Doudoroff (E-D) pathway. The E-D pathway consists o...
Saved in:
Published in: | Journal of bacteriology 2024-01, Vol.206 (1), p.e0036123-e0036123 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | is an opportunistic nosocomial pathogen responsible for a subset of catheter-associated urinary tract infections (CAUTI). In a murine model of
CAUTI, we previously demonstrated that urea within urine suppresses quorum sensing and induces the Entner-Doudoroff (E-D) pathway. The E-D pathway consists of the genes
,
,
, and
. Zwf and Pgl convert glucose-6-phosphate into 6-phosphogluconate. Edd hydrolyzes 6-phosphogluconate to 2-keto-3-deoxy-6-phosphogluconate (KDPG). Finally, Eda cleaves KDPG to glyceraldehyde-3-phosphate and pyruvate, which enters the citric acid cycle. Here, we generated in-frame E-D mutants in the strain PA14 and assessed their growth phenotypes on chemically defined and complex media. These E-D mutants have a growth defect when grown on glucose or gluconate as the sole carbon source, which is similar to results previously reported for PAO1 mutants lacking E-D genes. RNA-sequencing following short exposure to urine revealed minimal gene regulation differences compared to the wild type. In a murine CAUTI model, virulence testing of E-D mutants revealed that two mutants lacking
and
showed minor fitness defects. Infection with the ∆
strain exhibited a 20% increase in host survival, and the ∆
strain displayed decreased colonization of the catheter and kidneys. Consequently, our findings suggest that the E-D pathway in
is dispensable in this model of CAUTI. IMPORTANCE Prior studies have shown that the Entner-Doudoroff pathway is up-regulated when
is grown in urine. Pseudomonads use the Entner-Doudoroff (E-D) pathway to metabolize glucose instead of glycolysis, which led us to ask whether this pathway is required for urinary tract infection. Here, single-deletion mutants of each gene in the pathway were tested for growth on chemically defined media with single-carbon sources as well as complex media. The effect of each mutant on global gene expression in laboratory media and urine was characterized. The virulence of these mutants in a murine model of catheter-associated urinary tract infection revealed that these mutants had similar levels of colonization indicating that glucose is not the primary carbon source utilized in the urinary tract. |
---|---|
ISSN: | 0021-9193 1098-5530 |
DOI: | 10.1128/jb.00361-23 |