Loading…

A Novel In-Line Measurement and Analysis Method of Bubble Growth-Dependent Strain and Deformation Rates during Foaming

Bubble growth processes are highly influenced by the elongational viscosity of the blowing agent-loaded polymer melt. Therefore, the elongational viscosity is an important parameter for the development of new polymers for foaming applications, as well as for the prediction of bubble growth processes...

Full description

Saved in:
Bibliographic Details
Published in:Polymers 2024-01, Vol.16 (2), p.277
Main Authors: Schaible, Tobias, Bonten, Christian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bubble growth processes are highly influenced by the elongational viscosity of the blowing agent-loaded polymer melt. Therefore, the elongational viscosity is an important parameter for the development of new polymers for foaming applications, as well as for the prediction of bubble growth processes. Thus, knowledge of the initial expansion and deformation behavior in dependency on the polymer, the blowing agent concentration, and the process conditions is necessary. This study presents a novel method for the in-line observation and analysis of the initial expansion and deformation behavior within the bead foam extrusion process. For this purpose, nitrogen as the blowing agent was injected into the polymer melt (PS and PLA) during the extrusion process. The in-line observation system consists of a borescope equipped with a camera, which was integrated into the water box of an underwater pelletizer. The camera is controlled by a developed trigger by means of angular step signal analysis of a rotary encoder on the cutter shaft of the underwater pelletizer. Thus, images can be taken at any time during the foaming process depending on the cutter position to the die outlet. It is shown that the developed method provides reliable results and that the differences of the initial expansion and deformation behavior during bubble growth can be analyzed in-line in dependency on real foaming process conditions and the type of polymer used.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym16020277