Loading…

Comparison of the Properties of Pullulan-Based Active Edible Coatings Implemented for Improving Sliced Cheese Shelf Life

The development of active edible coatings with improved mechanical and barrier properties is a huge challenge. In this study, active edible coatings for sliced cheese have been developed using pullulan (Pull) in combination with two different biopolymers, chitosan (CS) and gelatine (Gel), and a comb...

Full description

Saved in:
Bibliographic Details
Published in:Polymers 2024-01, Vol.16 (2), p.178
Main Authors: Erceg, Tamara, Šovljanski, Olja, Tomić, Ana, Aćimović, Milica, Stupar, Alena, Baloš, Sebastian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The development of active edible coatings with improved mechanical and barrier properties is a huge challenge. In this study, active edible coatings for sliced cheese have been developed using pullulan (Pull) in combination with two different biopolymers, chitosan (CS) and gelatine (Gel), and a combination of hydrolats as a source of active compounds with antimicrobial effects. In comparison to the monolayer coating, the bilayer coating system demonstrates improved barrier and mechanical properties. A preliminary assessment of the antimicrobial effect of lemongrass and curry plant hydrolats has revealed that both hydrolats exhibited antimicrobial activity against the targeted bacterium , albeit at different levels. The obtained results suggest that a mixture of 1.56% lemongrass and 12.5% curry plant hydrolats yielded a lower fractional inhibitory concentration (FIC) value. Bilayer coating systems (Pull/CS and Pull/Gel) with an incorporated mixture of hydrolats have demonstrated effectiveness in both cases: artificial contamination before application of the coating system and after application of the coating system. In both contamination scenarios, the coating systems consistently effectively limited bacterial proliferation, indicating the antimicrobial effect of the hydrolat mixture in the coating layers. In the case of artificial contamination before applying the coating system, both coatings demonstrated antimicrobial effectiveness, but the formulation with chitosan had a biocide effect, while the other, with gelatine, had only a bacteriostatic effect in a long-term setting. In the second case, both Pull/CS and Pull/Gel coatings demonstrated effectiveness in inhibiting bacterial growth regardless of the moment of contamination of the sample; the Pull/CS coating showed slightly better antimicrobial activity, achieving complete elimination of bacteria earlier compared with the Pull/Gel coating system.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym16020178