Loading…
A large-scale study of peptide features defining immunogenicity of cancer neo-epitopes
Accurate prediction of immunogenicity for neo-epitopes arising from a cancer associated mutation is a crucial step in many bioinformatics pipelines that predict outcome of checkpoint blockade treatments or that aim to design personalised cancer immunotherapies and vaccines. In this study, we perform...
Saved in:
Published in: | NAR cancer 2024-03, Vol.6 (1), p.zcae002 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c346t-6d05f2e21f97083f9975991a5a62a4a45cd0078d0c30cd86a8ecb212451000ac3 |
container_end_page | |
container_issue | 1 |
container_start_page | zcae002 |
container_title | NAR cancer |
container_volume | 6 |
creator | Wan, Yat-Tsai Richie Koşaloğlu-Yalçın, Zeynep Peters, Bjoern Nielsen, Morten |
description | Accurate prediction of immunogenicity for neo-epitopes arising from a cancer associated mutation is a crucial step in many bioinformatics pipelines that predict outcome of checkpoint blockade treatments or that aim to design personalised cancer immunotherapies and vaccines. In this study, we performed a comprehensive analysis of peptide features relevant for prediction of immunogenicity using the Cancer Epitope Database and Analysis Resource (CEDAR), a curated database of cancer epitopes with experimentally validated immunogenicity annotations from peer-reviewed publications. The developed model, ICERFIRE (ICore-based Ensemble Random Forest for neo-epitope Immunogenicity pREdiction), extracts the predicted ICORE from the full neo-epitope as input, i.e. the nested peptide with the highest predicted major histocompatibility complex (MHC) binding potential combined with its predicted likelihood of antigen presentation (%Rank). Key additional features integrated into the model include assessment of the BLOSUM mutation score of the neo-epitope, and antigen expression levels of the wild-type counterpart which is often reflecting a neo-epitope's abundance. We demonstrate improved and robust performance of ICERFIRE over existing immunogenicity and epitope prediction models, both in cross-validation and on external validation datasets. |
doi_str_mv | 10.1093/narcan/zcae002 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10823584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920188640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-6d05f2e21f97083f9975991a5a62a4a45cd0078d0c30cd86a8ecb212451000ac3</originalsourceid><addsrcrecordid>eNpVkctLxDAQxoMouqx79Sg9eqnm1Wx6EhFfIHhRr2E2ndZIm9SkFda_3uquoqcZmN988_gIOWL0lNFSnHmIFvzZhwWklO-QGVeC51ot5e6f_IAsUnqlE1EwzpnaJwdCc62lVDPyfJG1EBvMk4UWszSM1ToLddZjP7gKsxphGCOmrMLaeeebzHXd6EOD3lk3fLPTDhZj5jHk2Lsh9JgOyV4NbcLFNs7J0_XV4-Vtfv9wc3d5cZ9bIdWQq4oWNUfO6nJJtajLclmUJYMCFAcJsrAVpUtdUSuorbQCjXbFGZcFm-4BK-bkfKPbj6sOK4t-iNCaProO4toEcOZ_xbsX04R3w6jmotByUjjZKsTwNmIaTOeSxbaF6Z4xGV5yyrRWkk7o6Qa1MaQUsf6dw6j5MsRsDDFbQ6aG47_b_eI_7xefukyKUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920188640</pqid></control><display><type>article</type><title>A large-scale study of peptide features defining immunogenicity of cancer neo-epitopes</title><source>Oxford Open</source><source>PubMed Central</source><creator>Wan, Yat-Tsai Richie ; Koşaloğlu-Yalçın, Zeynep ; Peters, Bjoern ; Nielsen, Morten</creator><creatorcontrib>Wan, Yat-Tsai Richie ; Koşaloğlu-Yalçın, Zeynep ; Peters, Bjoern ; Nielsen, Morten</creatorcontrib><description>Accurate prediction of immunogenicity for neo-epitopes arising from a cancer associated mutation is a crucial step in many bioinformatics pipelines that predict outcome of checkpoint blockade treatments or that aim to design personalised cancer immunotherapies and vaccines. In this study, we performed a comprehensive analysis of peptide features relevant for prediction of immunogenicity using the Cancer Epitope Database and Analysis Resource (CEDAR), a curated database of cancer epitopes with experimentally validated immunogenicity annotations from peer-reviewed publications. The developed model, ICERFIRE (ICore-based Ensemble Random Forest for neo-epitope Immunogenicity pREdiction), extracts the predicted ICORE from the full neo-epitope as input, i.e. the nested peptide with the highest predicted major histocompatibility complex (MHC) binding potential combined with its predicted likelihood of antigen presentation (%Rank). Key additional features integrated into the model include assessment of the BLOSUM mutation score of the neo-epitope, and antigen expression levels of the wild-type counterpart which is often reflecting a neo-epitope's abundance. We demonstrate improved and robust performance of ICERFIRE over existing immunogenicity and epitope prediction models, both in cross-validation and on external validation datasets.</description><identifier>ISSN: 2632-8674</identifier><identifier>EISSN: 2632-8674</identifier><identifier>DOI: 10.1093/narcan/zcae002</identifier><identifier>PMID: 38288446</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Cancer Computational Biology</subject><ispartof>NAR cancer, 2024-03, Vol.6 (1), p.zcae002</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of NAR Cancer.</rights><rights>The Author(s) 2024. Published by Oxford University Press on behalf of NAR Cancer. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c346t-6d05f2e21f97083f9975991a5a62a4a45cd0078d0c30cd86a8ecb212451000ac3</cites><orcidid>0000-0001-7885-4311 ; 0000-0003-0814-0289 ; 0000-0002-8457-6693 ; 0000-0003-0961-5055</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10823584/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10823584/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38288446$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wan, Yat-Tsai Richie</creatorcontrib><creatorcontrib>Koşaloğlu-Yalçın, Zeynep</creatorcontrib><creatorcontrib>Peters, Bjoern</creatorcontrib><creatorcontrib>Nielsen, Morten</creatorcontrib><title>A large-scale study of peptide features defining immunogenicity of cancer neo-epitopes</title><title>NAR cancer</title><addtitle>NAR Cancer</addtitle><description>Accurate prediction of immunogenicity for neo-epitopes arising from a cancer associated mutation is a crucial step in many bioinformatics pipelines that predict outcome of checkpoint blockade treatments or that aim to design personalised cancer immunotherapies and vaccines. In this study, we performed a comprehensive analysis of peptide features relevant for prediction of immunogenicity using the Cancer Epitope Database and Analysis Resource (CEDAR), a curated database of cancer epitopes with experimentally validated immunogenicity annotations from peer-reviewed publications. The developed model, ICERFIRE (ICore-based Ensemble Random Forest for neo-epitope Immunogenicity pREdiction), extracts the predicted ICORE from the full neo-epitope as input, i.e. the nested peptide with the highest predicted major histocompatibility complex (MHC) binding potential combined with its predicted likelihood of antigen presentation (%Rank). Key additional features integrated into the model include assessment of the BLOSUM mutation score of the neo-epitope, and antigen expression levels of the wild-type counterpart which is often reflecting a neo-epitope's abundance. We demonstrate improved and robust performance of ICERFIRE over existing immunogenicity and epitope prediction models, both in cross-validation and on external validation datasets.</description><subject>Cancer Computational Biology</subject><issn>2632-8674</issn><issn>2632-8674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVkctLxDAQxoMouqx79Sg9eqnm1Wx6EhFfIHhRr2E2ndZIm9SkFda_3uquoqcZmN988_gIOWL0lNFSnHmIFvzZhwWklO-QGVeC51ot5e6f_IAsUnqlE1EwzpnaJwdCc62lVDPyfJG1EBvMk4UWszSM1ToLddZjP7gKsxphGCOmrMLaeeebzHXd6EOD3lk3fLPTDhZj5jHk2Lsh9JgOyV4NbcLFNs7J0_XV4-Vtfv9wc3d5cZ9bIdWQq4oWNUfO6nJJtajLclmUJYMCFAcJsrAVpUtdUSuorbQCjXbFGZcFm-4BK-bkfKPbj6sOK4t-iNCaProO4toEcOZ_xbsX04R3w6jmotByUjjZKsTwNmIaTOeSxbaF6Z4xGV5yyrRWkk7o6Qa1MaQUsf6dw6j5MsRsDDFbQ6aG47_b_eI_7xefukyKUg</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Wan, Yat-Tsai Richie</creator><creator>Koşaloğlu-Yalçın, Zeynep</creator><creator>Peters, Bjoern</creator><creator>Nielsen, Morten</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7885-4311</orcidid><orcidid>https://orcid.org/0000-0003-0814-0289</orcidid><orcidid>https://orcid.org/0000-0002-8457-6693</orcidid><orcidid>https://orcid.org/0000-0003-0961-5055</orcidid></search><sort><creationdate>20240301</creationdate><title>A large-scale study of peptide features defining immunogenicity of cancer neo-epitopes</title><author>Wan, Yat-Tsai Richie ; Koşaloğlu-Yalçın, Zeynep ; Peters, Bjoern ; Nielsen, Morten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-6d05f2e21f97083f9975991a5a62a4a45cd0078d0c30cd86a8ecb212451000ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cancer Computational Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Yat-Tsai Richie</creatorcontrib><creatorcontrib>Koşaloğlu-Yalçın, Zeynep</creatorcontrib><creatorcontrib>Peters, Bjoern</creatorcontrib><creatorcontrib>Nielsen, Morten</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NAR cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Yat-Tsai Richie</au><au>Koşaloğlu-Yalçın, Zeynep</au><au>Peters, Bjoern</au><au>Nielsen, Morten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A large-scale study of peptide features defining immunogenicity of cancer neo-epitopes</atitle><jtitle>NAR cancer</jtitle><addtitle>NAR Cancer</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>6</volume><issue>1</issue><spage>zcae002</spage><pages>zcae002-</pages><issn>2632-8674</issn><eissn>2632-8674</eissn><abstract>Accurate prediction of immunogenicity for neo-epitopes arising from a cancer associated mutation is a crucial step in many bioinformatics pipelines that predict outcome of checkpoint blockade treatments or that aim to design personalised cancer immunotherapies and vaccines. In this study, we performed a comprehensive analysis of peptide features relevant for prediction of immunogenicity using the Cancer Epitope Database and Analysis Resource (CEDAR), a curated database of cancer epitopes with experimentally validated immunogenicity annotations from peer-reviewed publications. The developed model, ICERFIRE (ICore-based Ensemble Random Forest for neo-epitope Immunogenicity pREdiction), extracts the predicted ICORE from the full neo-epitope as input, i.e. the nested peptide with the highest predicted major histocompatibility complex (MHC) binding potential combined with its predicted likelihood of antigen presentation (%Rank). Key additional features integrated into the model include assessment of the BLOSUM mutation score of the neo-epitope, and antigen expression levels of the wild-type counterpart which is often reflecting a neo-epitope's abundance. We demonstrate improved and robust performance of ICERFIRE over existing immunogenicity and epitope prediction models, both in cross-validation and on external validation datasets.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>38288446</pmid><doi>10.1093/narcan/zcae002</doi><orcidid>https://orcid.org/0000-0001-7885-4311</orcidid><orcidid>https://orcid.org/0000-0003-0814-0289</orcidid><orcidid>https://orcid.org/0000-0002-8457-6693</orcidid><orcidid>https://orcid.org/0000-0003-0961-5055</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2632-8674 |
ispartof | NAR cancer, 2024-03, Vol.6 (1), p.zcae002 |
issn | 2632-8674 2632-8674 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10823584 |
source | Oxford Open; PubMed Central |
subjects | Cancer Computational Biology |
title | A large-scale study of peptide features defining immunogenicity of cancer neo-epitopes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20large-scale%20study%20of%20peptide%20features%20defining%20immunogenicity%20of%20cancer%20neo-epitopes&rft.jtitle=NAR%20cancer&rft.au=Wan,%20Yat-Tsai%20Richie&rft.date=2024-03-01&rft.volume=6&rft.issue=1&rft.spage=zcae002&rft.pages=zcae002-&rft.issn=2632-8674&rft.eissn=2632-8674&rft_id=info:doi/10.1093/narcan/zcae002&rft_dat=%3Cproquest_pubme%3E2920188640%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c346t-6d05f2e21f97083f9975991a5a62a4a45cd0078d0c30cd86a8ecb212451000ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2920188640&rft_id=info:pmid/38288446&rfr_iscdi=true |