Loading…

A large-scale study of peptide features defining immunogenicity of cancer neo-epitopes

Accurate prediction of immunogenicity for neo-epitopes arising from a cancer associated mutation is a crucial step in many bioinformatics pipelines that predict outcome of checkpoint blockade treatments or that aim to design personalised cancer immunotherapies and vaccines. In this study, we perform...

Full description

Saved in:
Bibliographic Details
Published in:NAR cancer 2024-03, Vol.6 (1), p.zcae002
Main Authors: Wan, Yat-Tsai Richie, Koşaloğlu-Yalçın, Zeynep, Peters, Bjoern, Nielsen, Morten
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c346t-6d05f2e21f97083f9975991a5a62a4a45cd0078d0c30cd86a8ecb212451000ac3
container_end_page
container_issue 1
container_start_page zcae002
container_title NAR cancer
container_volume 6
creator Wan, Yat-Tsai Richie
Koşaloğlu-Yalçın, Zeynep
Peters, Bjoern
Nielsen, Morten
description Accurate prediction of immunogenicity for neo-epitopes arising from a cancer associated mutation is a crucial step in many bioinformatics pipelines that predict outcome of checkpoint blockade treatments or that aim to design personalised cancer immunotherapies and vaccines. In this study, we performed a comprehensive analysis of peptide features relevant for prediction of immunogenicity using the Cancer Epitope Database and Analysis Resource (CEDAR), a curated database of cancer epitopes with experimentally validated immunogenicity annotations from peer-reviewed publications. The developed model, ICERFIRE (ICore-based Ensemble Random Forest for neo-epitope Immunogenicity pREdiction), extracts the predicted ICORE from the full neo-epitope as input, i.e. the nested peptide with the highest predicted major histocompatibility complex (MHC) binding potential combined with its predicted likelihood of antigen presentation (%Rank). Key additional features integrated into the model include assessment of the BLOSUM mutation score of the neo-epitope, and antigen expression levels of the wild-type counterpart which is often reflecting a neo-epitope's abundance. We demonstrate improved and robust performance of ICERFIRE over existing immunogenicity and epitope prediction models, both in cross-validation and on external validation datasets.
doi_str_mv 10.1093/narcan/zcae002
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10823584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920188640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-6d05f2e21f97083f9975991a5a62a4a45cd0078d0c30cd86a8ecb212451000ac3</originalsourceid><addsrcrecordid>eNpVkctLxDAQxoMouqx79Sg9eqnm1Wx6EhFfIHhRr2E2ndZIm9SkFda_3uquoqcZmN988_gIOWL0lNFSnHmIFvzZhwWklO-QGVeC51ot5e6f_IAsUnqlE1EwzpnaJwdCc62lVDPyfJG1EBvMk4UWszSM1ToLddZjP7gKsxphGCOmrMLaeeebzHXd6EOD3lk3fLPTDhZj5jHk2Lsh9JgOyV4NbcLFNs7J0_XV4-Vtfv9wc3d5cZ9bIdWQq4oWNUfO6nJJtajLclmUJYMCFAcJsrAVpUtdUSuorbQCjXbFGZcFm-4BK-bkfKPbj6sOK4t-iNCaProO4toEcOZ_xbsX04R3w6jmotByUjjZKsTwNmIaTOeSxbaF6Z4xGV5yyrRWkk7o6Qa1MaQUsf6dw6j5MsRsDDFbQ6aG47_b_eI_7xefukyKUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920188640</pqid></control><display><type>article</type><title>A large-scale study of peptide features defining immunogenicity of cancer neo-epitopes</title><source>Oxford Open</source><source>PubMed Central</source><creator>Wan, Yat-Tsai Richie ; Koşaloğlu-Yalçın, Zeynep ; Peters, Bjoern ; Nielsen, Morten</creator><creatorcontrib>Wan, Yat-Tsai Richie ; Koşaloğlu-Yalçın, Zeynep ; Peters, Bjoern ; Nielsen, Morten</creatorcontrib><description>Accurate prediction of immunogenicity for neo-epitopes arising from a cancer associated mutation is a crucial step in many bioinformatics pipelines that predict outcome of checkpoint blockade treatments or that aim to design personalised cancer immunotherapies and vaccines. In this study, we performed a comprehensive analysis of peptide features relevant for prediction of immunogenicity using the Cancer Epitope Database and Analysis Resource (CEDAR), a curated database of cancer epitopes with experimentally validated immunogenicity annotations from peer-reviewed publications. The developed model, ICERFIRE (ICore-based Ensemble Random Forest for neo-epitope Immunogenicity pREdiction), extracts the predicted ICORE from the full neo-epitope as input, i.e. the nested peptide with the highest predicted major histocompatibility complex (MHC) binding potential combined with its predicted likelihood of antigen presentation (%Rank). Key additional features integrated into the model include assessment of the BLOSUM mutation score of the neo-epitope, and antigen expression levels of the wild-type counterpart which is often reflecting a neo-epitope's abundance. We demonstrate improved and robust performance of ICERFIRE over existing immunogenicity and epitope prediction models, both in cross-validation and on external validation datasets.</description><identifier>ISSN: 2632-8674</identifier><identifier>EISSN: 2632-8674</identifier><identifier>DOI: 10.1093/narcan/zcae002</identifier><identifier>PMID: 38288446</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Cancer Computational Biology</subject><ispartof>NAR cancer, 2024-03, Vol.6 (1), p.zcae002</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of NAR Cancer.</rights><rights>The Author(s) 2024. Published by Oxford University Press on behalf of NAR Cancer. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c346t-6d05f2e21f97083f9975991a5a62a4a45cd0078d0c30cd86a8ecb212451000ac3</cites><orcidid>0000-0001-7885-4311 ; 0000-0003-0814-0289 ; 0000-0002-8457-6693 ; 0000-0003-0961-5055</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10823584/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10823584/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38288446$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wan, Yat-Tsai Richie</creatorcontrib><creatorcontrib>Koşaloğlu-Yalçın, Zeynep</creatorcontrib><creatorcontrib>Peters, Bjoern</creatorcontrib><creatorcontrib>Nielsen, Morten</creatorcontrib><title>A large-scale study of peptide features defining immunogenicity of cancer neo-epitopes</title><title>NAR cancer</title><addtitle>NAR Cancer</addtitle><description>Accurate prediction of immunogenicity for neo-epitopes arising from a cancer associated mutation is a crucial step in many bioinformatics pipelines that predict outcome of checkpoint blockade treatments or that aim to design personalised cancer immunotherapies and vaccines. In this study, we performed a comprehensive analysis of peptide features relevant for prediction of immunogenicity using the Cancer Epitope Database and Analysis Resource (CEDAR), a curated database of cancer epitopes with experimentally validated immunogenicity annotations from peer-reviewed publications. The developed model, ICERFIRE (ICore-based Ensemble Random Forest for neo-epitope Immunogenicity pREdiction), extracts the predicted ICORE from the full neo-epitope as input, i.e. the nested peptide with the highest predicted major histocompatibility complex (MHC) binding potential combined with its predicted likelihood of antigen presentation (%Rank). Key additional features integrated into the model include assessment of the BLOSUM mutation score of the neo-epitope, and antigen expression levels of the wild-type counterpart which is often reflecting a neo-epitope's abundance. We demonstrate improved and robust performance of ICERFIRE over existing immunogenicity and epitope prediction models, both in cross-validation and on external validation datasets.</description><subject>Cancer Computational Biology</subject><issn>2632-8674</issn><issn>2632-8674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVkctLxDAQxoMouqx79Sg9eqnm1Wx6EhFfIHhRr2E2ndZIm9SkFda_3uquoqcZmN988_gIOWL0lNFSnHmIFvzZhwWklO-QGVeC51ot5e6f_IAsUnqlE1EwzpnaJwdCc62lVDPyfJG1EBvMk4UWszSM1ToLddZjP7gKsxphGCOmrMLaeeebzHXd6EOD3lk3fLPTDhZj5jHk2Lsh9JgOyV4NbcLFNs7J0_XV4-Vtfv9wc3d5cZ9bIdWQq4oWNUfO6nJJtajLclmUJYMCFAcJsrAVpUtdUSuorbQCjXbFGZcFm-4BK-bkfKPbj6sOK4t-iNCaProO4toEcOZ_xbsX04R3w6jmotByUjjZKsTwNmIaTOeSxbaF6Z4xGV5yyrRWkk7o6Qa1MaQUsf6dw6j5MsRsDDFbQ6aG47_b_eI_7xefukyKUg</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Wan, Yat-Tsai Richie</creator><creator>Koşaloğlu-Yalçın, Zeynep</creator><creator>Peters, Bjoern</creator><creator>Nielsen, Morten</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7885-4311</orcidid><orcidid>https://orcid.org/0000-0003-0814-0289</orcidid><orcidid>https://orcid.org/0000-0002-8457-6693</orcidid><orcidid>https://orcid.org/0000-0003-0961-5055</orcidid></search><sort><creationdate>20240301</creationdate><title>A large-scale study of peptide features defining immunogenicity of cancer neo-epitopes</title><author>Wan, Yat-Tsai Richie ; Koşaloğlu-Yalçın, Zeynep ; Peters, Bjoern ; Nielsen, Morten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-6d05f2e21f97083f9975991a5a62a4a45cd0078d0c30cd86a8ecb212451000ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cancer Computational Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Yat-Tsai Richie</creatorcontrib><creatorcontrib>Koşaloğlu-Yalçın, Zeynep</creatorcontrib><creatorcontrib>Peters, Bjoern</creatorcontrib><creatorcontrib>Nielsen, Morten</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NAR cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Yat-Tsai Richie</au><au>Koşaloğlu-Yalçın, Zeynep</au><au>Peters, Bjoern</au><au>Nielsen, Morten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A large-scale study of peptide features defining immunogenicity of cancer neo-epitopes</atitle><jtitle>NAR cancer</jtitle><addtitle>NAR Cancer</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>6</volume><issue>1</issue><spage>zcae002</spage><pages>zcae002-</pages><issn>2632-8674</issn><eissn>2632-8674</eissn><abstract>Accurate prediction of immunogenicity for neo-epitopes arising from a cancer associated mutation is a crucial step in many bioinformatics pipelines that predict outcome of checkpoint blockade treatments or that aim to design personalised cancer immunotherapies and vaccines. In this study, we performed a comprehensive analysis of peptide features relevant for prediction of immunogenicity using the Cancer Epitope Database and Analysis Resource (CEDAR), a curated database of cancer epitopes with experimentally validated immunogenicity annotations from peer-reviewed publications. The developed model, ICERFIRE (ICore-based Ensemble Random Forest for neo-epitope Immunogenicity pREdiction), extracts the predicted ICORE from the full neo-epitope as input, i.e. the nested peptide with the highest predicted major histocompatibility complex (MHC) binding potential combined with its predicted likelihood of antigen presentation (%Rank). Key additional features integrated into the model include assessment of the BLOSUM mutation score of the neo-epitope, and antigen expression levels of the wild-type counterpart which is often reflecting a neo-epitope's abundance. We demonstrate improved and robust performance of ICERFIRE over existing immunogenicity and epitope prediction models, both in cross-validation and on external validation datasets.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>38288446</pmid><doi>10.1093/narcan/zcae002</doi><orcidid>https://orcid.org/0000-0001-7885-4311</orcidid><orcidid>https://orcid.org/0000-0003-0814-0289</orcidid><orcidid>https://orcid.org/0000-0002-8457-6693</orcidid><orcidid>https://orcid.org/0000-0003-0961-5055</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2632-8674
ispartof NAR cancer, 2024-03, Vol.6 (1), p.zcae002
issn 2632-8674
2632-8674
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10823584
source Oxford Open; PubMed Central
subjects Cancer Computational Biology
title A large-scale study of peptide features defining immunogenicity of cancer neo-epitopes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20large-scale%20study%20of%20peptide%20features%20defining%20immunogenicity%20of%20cancer%20neo-epitopes&rft.jtitle=NAR%20cancer&rft.au=Wan,%20Yat-Tsai%20Richie&rft.date=2024-03-01&rft.volume=6&rft.issue=1&rft.spage=zcae002&rft.pages=zcae002-&rft.issn=2632-8674&rft.eissn=2632-8674&rft_id=info:doi/10.1093/narcan/zcae002&rft_dat=%3Cproquest_pubme%3E2920188640%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c346t-6d05f2e21f97083f9975991a5a62a4a45cd0078d0c30cd86a8ecb212451000ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2920188640&rft_id=info:pmid/38288446&rfr_iscdi=true