Loading…

Using saliva epigenetic data to develop and validate a multivariable predictor of esophageal cancer status

Salivary epigenetic biomarkers may detect esophageal cancer. A total of 256 saliva samples from esophageal adenocarcinoma patients and matched volunteers were analyzed with Illumina EPIC methylation arrays. Three datasets were created, using 64% for discovery, 16% for testing and 20% for validation....

Full description

Saved in:
Bibliographic Details
Published in:Epigenomics 2024-01, Vol.16 (2), p.109-125
Main Authors: Stone, Timothy C, Ward, Vanessa, Hogan, Aine, Ho, Kai Ma, Wilson, Ash, McBain, Hazel, Duku, Margaret, Wolfson, Paul, Cheung, Sharon, Rosenfeld, Avi, Lovat, Laurence B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c394t-9e761501cd9b7ac7c276ea023861b4523fcd49d42d0bc7ed89a9e8b2c4501b103
container_end_page 125
container_issue 2
container_start_page 109
container_title Epigenomics
container_volume 16
creator Stone, Timothy C
Ward, Vanessa
Hogan, Aine
Ho, Kai Ma
Wilson, Ash
McBain, Hazel
Duku, Margaret
Wolfson, Paul
Cheung, Sharon
Rosenfeld, Avi
Lovat, Laurence B
description Salivary epigenetic biomarkers may detect esophageal cancer. A total of 256 saliva samples from esophageal adenocarcinoma patients and matched volunteers were analyzed with Illumina EPIC methylation arrays. Three datasets were created, using 64% for discovery, 16% for testing and 20% for validation. Modules of gene-based methylation probes were created using weighted gene coexpression network analysis. Module significance to disease and gene importance to module were determined and a random forest classifier generated using best-scoring gene-related epigenetic probes. A cost-sensitive wrapper algorithm maximized cancer diagnosis. Using age, sex and seven probes, esophageal adenocarcinoma was detected with area under the curve of 0.72 in discovery, 0.73 in testing and 0.75 in validation datasets. Cancer sensitivity was 88% with specificity of 31%. We have demonstrated a potentially clinically viable classifier of esophageal cancer based on saliva methylation.
doi_str_mv 10.2217/epi-2023-0248
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10825730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2915571619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-9e761501cd9b7ac7c276ea023861b4523fcd49d42d0bc7ed89a9e8b2c4501b103</originalsourceid><addsrcrecordid>eNp1kc1rHSEUxaW0NCHNstvisptp1PlwXIUSmjYQyCYPupM7eufF4IwTdR70v6_DSx_tom706u8e9RxCPnL2RQgur3BxlWCirpho-jfknMuWVVyJn29Pa87PyGVKz6yMWvSq4-_JWd0L0bUNPyfPu-TmPU3g3QFo0dvjjNkZaiEDzYFaPKAPC4XZ0kOhyj5SoNPqc-mIDgaPdIlonckh0jBSTGF5gj2CpwZmg5GmDHlNH8i7EXzCy9f5guxuvz3e_KjuH77f3Xy9r0ytmlwplB1vGTdWDRKMNEJ2COWTfceHphX1aGyjbCMsG4xE2ytQ2A_CNKVp4Ky-INdH3WUdJrQG5xzB6yW6CeIvHcDpf09m96T34aA560Ur603h86tCDC8rpqwnlwx6DzOGNWmheNtK3nFV0OqImhhSijie7uFMbxnp4qneMtJbRoX_9PfjTvSfRAqgjsC45jViMg6Lh_pYTZvNbsb_iP8GdKii-A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915571619</pqid></control><display><type>article</type><title>Using saliva epigenetic data to develop and validate a multivariable predictor of esophageal cancer status</title><source>PubMed Central</source><creator>Stone, Timothy C ; Ward, Vanessa ; Hogan, Aine ; Ho, Kai Ma ; Wilson, Ash ; McBain, Hazel ; Duku, Margaret ; Wolfson, Paul ; Cheung, Sharon ; Rosenfeld, Avi ; Lovat, Laurence B</creator><creatorcontrib>Stone, Timothy C ; Ward, Vanessa ; Hogan, Aine ; Ho, Kai Ma ; Wilson, Ash ; McBain, Hazel ; Duku, Margaret ; Wolfson, Paul ; Cheung, Sharon ; Rosenfeld, Avi ; Lovat, Laurence B ; SPIT Study Group Collaborators</creatorcontrib><description>Salivary epigenetic biomarkers may detect esophageal cancer. A total of 256 saliva samples from esophageal adenocarcinoma patients and matched volunteers were analyzed with Illumina EPIC methylation arrays. Three datasets were created, using 64% for discovery, 16% for testing and 20% for validation. Modules of gene-based methylation probes were created using weighted gene coexpression network analysis. Module significance to disease and gene importance to module were determined and a random forest classifier generated using best-scoring gene-related epigenetic probes. A cost-sensitive wrapper algorithm maximized cancer diagnosis. Using age, sex and seven probes, esophageal adenocarcinoma was detected with area under the curve of 0.72 in discovery, 0.73 in testing and 0.75 in validation datasets. Cancer sensitivity was 88% with specificity of 31%. We have demonstrated a potentially clinically viable classifier of esophageal cancer based on saliva methylation.</description><identifier>ISSN: 1750-1911</identifier><identifier>ISSN: 1750-192X</identifier><identifier>EISSN: 1750-192X</identifier><identifier>DOI: 10.2217/epi-2023-0248</identifier><identifier>PMID: 38226541</identifier><language>eng</language><publisher>England: Future Medicine Ltd</publisher><subject>biomarker panel ; diagnosis ; epigenetics ; esophageal adenocarcinoma ; saliva</subject><ispartof>Epigenomics, 2024-01, Vol.16 (2), p.109-125</ispartof><rights>2024 The Authors</rights><rights>2024 The Authors 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c394t-9e761501cd9b7ac7c276ea023861b4523fcd49d42d0bc7ed89a9e8b2c4501b103</cites><orcidid>0000-0002-8997-5183 ; 0000-0003-4542-3915 ; 0000-0001-7585-6848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10825730/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10825730/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38226541$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stone, Timothy C</creatorcontrib><creatorcontrib>Ward, Vanessa</creatorcontrib><creatorcontrib>Hogan, Aine</creatorcontrib><creatorcontrib>Ho, Kai Ma</creatorcontrib><creatorcontrib>Wilson, Ash</creatorcontrib><creatorcontrib>McBain, Hazel</creatorcontrib><creatorcontrib>Duku, Margaret</creatorcontrib><creatorcontrib>Wolfson, Paul</creatorcontrib><creatorcontrib>Cheung, Sharon</creatorcontrib><creatorcontrib>Rosenfeld, Avi</creatorcontrib><creatorcontrib>Lovat, Laurence B</creatorcontrib><creatorcontrib>SPIT Study Group Collaborators</creatorcontrib><title>Using saliva epigenetic data to develop and validate a multivariable predictor of esophageal cancer status</title><title>Epigenomics</title><addtitle>Epigenomics</addtitle><description>Salivary epigenetic biomarkers may detect esophageal cancer. A total of 256 saliva samples from esophageal adenocarcinoma patients and matched volunteers were analyzed with Illumina EPIC methylation arrays. Three datasets were created, using 64% for discovery, 16% for testing and 20% for validation. Modules of gene-based methylation probes were created using weighted gene coexpression network analysis. Module significance to disease and gene importance to module were determined and a random forest classifier generated using best-scoring gene-related epigenetic probes. A cost-sensitive wrapper algorithm maximized cancer diagnosis. Using age, sex and seven probes, esophageal adenocarcinoma was detected with area under the curve of 0.72 in discovery, 0.73 in testing and 0.75 in validation datasets. Cancer sensitivity was 88% with specificity of 31%. We have demonstrated a potentially clinically viable classifier of esophageal cancer based on saliva methylation.</description><subject>biomarker panel</subject><subject>diagnosis</subject><subject>epigenetics</subject><subject>esophageal adenocarcinoma</subject><subject>saliva</subject><issn>1750-1911</issn><issn>1750-192X</issn><issn>1750-192X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kc1rHSEUxaW0NCHNstvisptp1PlwXIUSmjYQyCYPupM7eufF4IwTdR70v6_DSx_tom706u8e9RxCPnL2RQgur3BxlWCirpho-jfknMuWVVyJn29Pa87PyGVKz6yMWvSq4-_JWd0L0bUNPyfPu-TmPU3g3QFo0dvjjNkZaiEDzYFaPKAPC4XZ0kOhyj5SoNPqc-mIDgaPdIlonckh0jBSTGF5gj2CpwZmg5GmDHlNH8i7EXzCy9f5guxuvz3e_KjuH77f3Xy9r0ytmlwplB1vGTdWDRKMNEJ2COWTfceHphX1aGyjbCMsG4xE2ytQ2A_CNKVp4Ky-INdH3WUdJrQG5xzB6yW6CeIvHcDpf09m96T34aA560Ur603h86tCDC8rpqwnlwx6DzOGNWmheNtK3nFV0OqImhhSijie7uFMbxnp4qneMtJbRoX_9PfjTvSfRAqgjsC45jViMg6Lh_pYTZvNbsb_iP8GdKii-A</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Stone, Timothy C</creator><creator>Ward, Vanessa</creator><creator>Hogan, Aine</creator><creator>Ho, Kai Ma</creator><creator>Wilson, Ash</creator><creator>McBain, Hazel</creator><creator>Duku, Margaret</creator><creator>Wolfson, Paul</creator><creator>Cheung, Sharon</creator><creator>Rosenfeld, Avi</creator><creator>Lovat, Laurence B</creator><general>Future Medicine Ltd</general><scope>FUMOA</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8997-5183</orcidid><orcidid>https://orcid.org/0000-0003-4542-3915</orcidid><orcidid>https://orcid.org/0000-0001-7585-6848</orcidid></search><sort><creationdate>20240101</creationdate><title>Using saliva epigenetic data to develop and validate a multivariable predictor of esophageal cancer status</title><author>Stone, Timothy C ; Ward, Vanessa ; Hogan, Aine ; Ho, Kai Ma ; Wilson, Ash ; McBain, Hazel ; Duku, Margaret ; Wolfson, Paul ; Cheung, Sharon ; Rosenfeld, Avi ; Lovat, Laurence B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-9e761501cd9b7ac7c276ea023861b4523fcd49d42d0bc7ed89a9e8b2c4501b103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>biomarker panel</topic><topic>diagnosis</topic><topic>epigenetics</topic><topic>esophageal adenocarcinoma</topic><topic>saliva</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stone, Timothy C</creatorcontrib><creatorcontrib>Ward, Vanessa</creatorcontrib><creatorcontrib>Hogan, Aine</creatorcontrib><creatorcontrib>Ho, Kai Ma</creatorcontrib><creatorcontrib>Wilson, Ash</creatorcontrib><creatorcontrib>McBain, Hazel</creatorcontrib><creatorcontrib>Duku, Margaret</creatorcontrib><creatorcontrib>Wolfson, Paul</creatorcontrib><creatorcontrib>Cheung, Sharon</creatorcontrib><creatorcontrib>Rosenfeld, Avi</creatorcontrib><creatorcontrib>Lovat, Laurence B</creatorcontrib><creatorcontrib>SPIT Study Group Collaborators</creatorcontrib><collection>Future Medicine (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Epigenomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stone, Timothy C</au><au>Ward, Vanessa</au><au>Hogan, Aine</au><au>Ho, Kai Ma</au><au>Wilson, Ash</au><au>McBain, Hazel</au><au>Duku, Margaret</au><au>Wolfson, Paul</au><au>Cheung, Sharon</au><au>Rosenfeld, Avi</au><au>Lovat, Laurence B</au><aucorp>SPIT Study Group Collaborators</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using saliva epigenetic data to develop and validate a multivariable predictor of esophageal cancer status</atitle><jtitle>Epigenomics</jtitle><addtitle>Epigenomics</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>16</volume><issue>2</issue><spage>109</spage><epage>125</epage><pages>109-125</pages><issn>1750-1911</issn><issn>1750-192X</issn><eissn>1750-192X</eissn><abstract>Salivary epigenetic biomarkers may detect esophageal cancer. A total of 256 saliva samples from esophageal adenocarcinoma patients and matched volunteers were analyzed with Illumina EPIC methylation arrays. Three datasets were created, using 64% for discovery, 16% for testing and 20% for validation. Modules of gene-based methylation probes were created using weighted gene coexpression network analysis. Module significance to disease and gene importance to module were determined and a random forest classifier generated using best-scoring gene-related epigenetic probes. A cost-sensitive wrapper algorithm maximized cancer diagnosis. Using age, sex and seven probes, esophageal adenocarcinoma was detected with area under the curve of 0.72 in discovery, 0.73 in testing and 0.75 in validation datasets. Cancer sensitivity was 88% with specificity of 31%. We have demonstrated a potentially clinically viable classifier of esophageal cancer based on saliva methylation.</abstract><cop>England</cop><pub>Future Medicine Ltd</pub><pmid>38226541</pmid><doi>10.2217/epi-2023-0248</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8997-5183</orcidid><orcidid>https://orcid.org/0000-0003-4542-3915</orcidid><orcidid>https://orcid.org/0000-0001-7585-6848</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1750-1911
ispartof Epigenomics, 2024-01, Vol.16 (2), p.109-125
issn 1750-1911
1750-192X
1750-192X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10825730
source PubMed Central
subjects biomarker panel
diagnosis
epigenetics
esophageal adenocarcinoma
saliva
title Using saliva epigenetic data to develop and validate a multivariable predictor of esophageal cancer status
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A34%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20saliva%20epigenetic%20data%20to%20develop%20and%20validate%20a%20multivariable%20predictor%20of%20esophageal%20cancer%20status&rft.jtitle=Epigenomics&rft.au=Stone,%20Timothy%20C&rft.aucorp=SPIT%20Study%20Group%20Collaborators&rft.date=2024-01-01&rft.volume=16&rft.issue=2&rft.spage=109&rft.epage=125&rft.pages=109-125&rft.issn=1750-1911&rft.eissn=1750-192X&rft_id=info:doi/10.2217/epi-2023-0248&rft_dat=%3Cproquest_pubme%3E2915571619%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c394t-9e761501cd9b7ac7c276ea023861b4523fcd49d42d0bc7ed89a9e8b2c4501b103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2915571619&rft_id=info:pmid/38226541&rfr_iscdi=true