Loading…
Using saliva epigenetic data to develop and validate a multivariable predictor of esophageal cancer status
Salivary epigenetic biomarkers may detect esophageal cancer. A total of 256 saliva samples from esophageal adenocarcinoma patients and matched volunteers were analyzed with Illumina EPIC methylation arrays. Three datasets were created, using 64% for discovery, 16% for testing and 20% for validation....
Saved in:
Published in: | Epigenomics 2024-01, Vol.16 (2), p.109-125 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c394t-9e761501cd9b7ac7c276ea023861b4523fcd49d42d0bc7ed89a9e8b2c4501b103 |
container_end_page | 125 |
container_issue | 2 |
container_start_page | 109 |
container_title | Epigenomics |
container_volume | 16 |
creator | Stone, Timothy C Ward, Vanessa Hogan, Aine Ho, Kai Ma Wilson, Ash McBain, Hazel Duku, Margaret Wolfson, Paul Cheung, Sharon Rosenfeld, Avi Lovat, Laurence B |
description | Salivary epigenetic biomarkers may detect esophageal cancer.
A total of 256 saliva samples from esophageal adenocarcinoma patients and matched volunteers were analyzed with Illumina EPIC methylation arrays. Three datasets were created, using 64% for discovery, 16% for testing and 20% for validation. Modules of gene-based methylation probes were created using weighted gene coexpression network analysis. Module significance to disease and gene importance to module were determined and a random forest classifier generated using best-scoring gene-related epigenetic probes. A cost-sensitive wrapper algorithm maximized cancer diagnosis.
Using age, sex and seven probes, esophageal adenocarcinoma was detected with area under the curve of 0.72 in discovery, 0.73 in testing and 0.75 in validation datasets. Cancer sensitivity was 88% with specificity of 31%.
We have demonstrated a potentially clinically viable classifier of esophageal cancer based on saliva methylation. |
doi_str_mv | 10.2217/epi-2023-0248 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10825730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2915571619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-9e761501cd9b7ac7c276ea023861b4523fcd49d42d0bc7ed89a9e8b2c4501b103</originalsourceid><addsrcrecordid>eNp1kc1rHSEUxaW0NCHNstvisptp1PlwXIUSmjYQyCYPupM7eufF4IwTdR70v6_DSx_tom706u8e9RxCPnL2RQgur3BxlWCirpho-jfknMuWVVyJn29Pa87PyGVKz6yMWvSq4-_JWd0L0bUNPyfPu-TmPU3g3QFo0dvjjNkZaiEDzYFaPKAPC4XZ0kOhyj5SoNPqc-mIDgaPdIlonckh0jBSTGF5gj2CpwZmg5GmDHlNH8i7EXzCy9f5guxuvz3e_KjuH77f3Xy9r0ytmlwplB1vGTdWDRKMNEJ2COWTfceHphX1aGyjbCMsG4xE2ytQ2A_CNKVp4Ky-INdH3WUdJrQG5xzB6yW6CeIvHcDpf09m96T34aA560Ur603h86tCDC8rpqwnlwx6DzOGNWmheNtK3nFV0OqImhhSijie7uFMbxnp4qneMtJbRoX_9PfjTvSfRAqgjsC45jViMg6Lh_pYTZvNbsb_iP8GdKii-A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915571619</pqid></control><display><type>article</type><title>Using saliva epigenetic data to develop and validate a multivariable predictor of esophageal cancer status</title><source>PubMed Central</source><creator>Stone, Timothy C ; Ward, Vanessa ; Hogan, Aine ; Ho, Kai Ma ; Wilson, Ash ; McBain, Hazel ; Duku, Margaret ; Wolfson, Paul ; Cheung, Sharon ; Rosenfeld, Avi ; Lovat, Laurence B</creator><creatorcontrib>Stone, Timothy C ; Ward, Vanessa ; Hogan, Aine ; Ho, Kai Ma ; Wilson, Ash ; McBain, Hazel ; Duku, Margaret ; Wolfson, Paul ; Cheung, Sharon ; Rosenfeld, Avi ; Lovat, Laurence B ; SPIT Study Group Collaborators</creatorcontrib><description>Salivary epigenetic biomarkers may detect esophageal cancer.
A total of 256 saliva samples from esophageal adenocarcinoma patients and matched volunteers were analyzed with Illumina EPIC methylation arrays. Three datasets were created, using 64% for discovery, 16% for testing and 20% for validation. Modules of gene-based methylation probes were created using weighted gene coexpression network analysis. Module significance to disease and gene importance to module were determined and a random forest classifier generated using best-scoring gene-related epigenetic probes. A cost-sensitive wrapper algorithm maximized cancer diagnosis.
Using age, sex and seven probes, esophageal adenocarcinoma was detected with area under the curve of 0.72 in discovery, 0.73 in testing and 0.75 in validation datasets. Cancer sensitivity was 88% with specificity of 31%.
We have demonstrated a potentially clinically viable classifier of esophageal cancer based on saliva methylation.</description><identifier>ISSN: 1750-1911</identifier><identifier>ISSN: 1750-192X</identifier><identifier>EISSN: 1750-192X</identifier><identifier>DOI: 10.2217/epi-2023-0248</identifier><identifier>PMID: 38226541</identifier><language>eng</language><publisher>England: Future Medicine Ltd</publisher><subject>biomarker panel ; diagnosis ; epigenetics ; esophageal adenocarcinoma ; saliva</subject><ispartof>Epigenomics, 2024-01, Vol.16 (2), p.109-125</ispartof><rights>2024 The Authors</rights><rights>2024 The Authors 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c394t-9e761501cd9b7ac7c276ea023861b4523fcd49d42d0bc7ed89a9e8b2c4501b103</cites><orcidid>0000-0002-8997-5183 ; 0000-0003-4542-3915 ; 0000-0001-7585-6848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10825730/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10825730/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38226541$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stone, Timothy C</creatorcontrib><creatorcontrib>Ward, Vanessa</creatorcontrib><creatorcontrib>Hogan, Aine</creatorcontrib><creatorcontrib>Ho, Kai Ma</creatorcontrib><creatorcontrib>Wilson, Ash</creatorcontrib><creatorcontrib>McBain, Hazel</creatorcontrib><creatorcontrib>Duku, Margaret</creatorcontrib><creatorcontrib>Wolfson, Paul</creatorcontrib><creatorcontrib>Cheung, Sharon</creatorcontrib><creatorcontrib>Rosenfeld, Avi</creatorcontrib><creatorcontrib>Lovat, Laurence B</creatorcontrib><creatorcontrib>SPIT Study Group Collaborators</creatorcontrib><title>Using saliva epigenetic data to develop and validate a multivariable predictor of esophageal cancer status</title><title>Epigenomics</title><addtitle>Epigenomics</addtitle><description>Salivary epigenetic biomarkers may detect esophageal cancer.
A total of 256 saliva samples from esophageal adenocarcinoma patients and matched volunteers were analyzed with Illumina EPIC methylation arrays. Three datasets were created, using 64% for discovery, 16% for testing and 20% for validation. Modules of gene-based methylation probes were created using weighted gene coexpression network analysis. Module significance to disease and gene importance to module were determined and a random forest classifier generated using best-scoring gene-related epigenetic probes. A cost-sensitive wrapper algorithm maximized cancer diagnosis.
Using age, sex and seven probes, esophageal adenocarcinoma was detected with area under the curve of 0.72 in discovery, 0.73 in testing and 0.75 in validation datasets. Cancer sensitivity was 88% with specificity of 31%.
We have demonstrated a potentially clinically viable classifier of esophageal cancer based on saliva methylation.</description><subject>biomarker panel</subject><subject>diagnosis</subject><subject>epigenetics</subject><subject>esophageal adenocarcinoma</subject><subject>saliva</subject><issn>1750-1911</issn><issn>1750-192X</issn><issn>1750-192X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kc1rHSEUxaW0NCHNstvisptp1PlwXIUSmjYQyCYPupM7eufF4IwTdR70v6_DSx_tom706u8e9RxCPnL2RQgur3BxlWCirpho-jfknMuWVVyJn29Pa87PyGVKz6yMWvSq4-_JWd0L0bUNPyfPu-TmPU3g3QFo0dvjjNkZaiEDzYFaPKAPC4XZ0kOhyj5SoNPqc-mIDgaPdIlonckh0jBSTGF5gj2CpwZmg5GmDHlNH8i7EXzCy9f5guxuvz3e_KjuH77f3Xy9r0ytmlwplB1vGTdWDRKMNEJ2COWTfceHphX1aGyjbCMsG4xE2ytQ2A_CNKVp4Ky-INdH3WUdJrQG5xzB6yW6CeIvHcDpf09m96T34aA560Ur603h86tCDC8rpqwnlwx6DzOGNWmheNtK3nFV0OqImhhSijie7uFMbxnp4qneMtJbRoX_9PfjTvSfRAqgjsC45jViMg6Lh_pYTZvNbsb_iP8GdKii-A</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Stone, Timothy C</creator><creator>Ward, Vanessa</creator><creator>Hogan, Aine</creator><creator>Ho, Kai Ma</creator><creator>Wilson, Ash</creator><creator>McBain, Hazel</creator><creator>Duku, Margaret</creator><creator>Wolfson, Paul</creator><creator>Cheung, Sharon</creator><creator>Rosenfeld, Avi</creator><creator>Lovat, Laurence B</creator><general>Future Medicine Ltd</general><scope>FUMOA</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8997-5183</orcidid><orcidid>https://orcid.org/0000-0003-4542-3915</orcidid><orcidid>https://orcid.org/0000-0001-7585-6848</orcidid></search><sort><creationdate>20240101</creationdate><title>Using saliva epigenetic data to develop and validate a multivariable predictor of esophageal cancer status</title><author>Stone, Timothy C ; Ward, Vanessa ; Hogan, Aine ; Ho, Kai Ma ; Wilson, Ash ; McBain, Hazel ; Duku, Margaret ; Wolfson, Paul ; Cheung, Sharon ; Rosenfeld, Avi ; Lovat, Laurence B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-9e761501cd9b7ac7c276ea023861b4523fcd49d42d0bc7ed89a9e8b2c4501b103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>biomarker panel</topic><topic>diagnosis</topic><topic>epigenetics</topic><topic>esophageal adenocarcinoma</topic><topic>saliva</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stone, Timothy C</creatorcontrib><creatorcontrib>Ward, Vanessa</creatorcontrib><creatorcontrib>Hogan, Aine</creatorcontrib><creatorcontrib>Ho, Kai Ma</creatorcontrib><creatorcontrib>Wilson, Ash</creatorcontrib><creatorcontrib>McBain, Hazel</creatorcontrib><creatorcontrib>Duku, Margaret</creatorcontrib><creatorcontrib>Wolfson, Paul</creatorcontrib><creatorcontrib>Cheung, Sharon</creatorcontrib><creatorcontrib>Rosenfeld, Avi</creatorcontrib><creatorcontrib>Lovat, Laurence B</creatorcontrib><creatorcontrib>SPIT Study Group Collaborators</creatorcontrib><collection>Future Medicine (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Epigenomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stone, Timothy C</au><au>Ward, Vanessa</au><au>Hogan, Aine</au><au>Ho, Kai Ma</au><au>Wilson, Ash</au><au>McBain, Hazel</au><au>Duku, Margaret</au><au>Wolfson, Paul</au><au>Cheung, Sharon</au><au>Rosenfeld, Avi</au><au>Lovat, Laurence B</au><aucorp>SPIT Study Group Collaborators</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using saliva epigenetic data to develop and validate a multivariable predictor of esophageal cancer status</atitle><jtitle>Epigenomics</jtitle><addtitle>Epigenomics</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>16</volume><issue>2</issue><spage>109</spage><epage>125</epage><pages>109-125</pages><issn>1750-1911</issn><issn>1750-192X</issn><eissn>1750-192X</eissn><abstract>Salivary epigenetic biomarkers may detect esophageal cancer.
A total of 256 saliva samples from esophageal adenocarcinoma patients and matched volunteers were analyzed with Illumina EPIC methylation arrays. Three datasets were created, using 64% for discovery, 16% for testing and 20% for validation. Modules of gene-based methylation probes were created using weighted gene coexpression network analysis. Module significance to disease and gene importance to module were determined and a random forest classifier generated using best-scoring gene-related epigenetic probes. A cost-sensitive wrapper algorithm maximized cancer diagnosis.
Using age, sex and seven probes, esophageal adenocarcinoma was detected with area under the curve of 0.72 in discovery, 0.73 in testing and 0.75 in validation datasets. Cancer sensitivity was 88% with specificity of 31%.
We have demonstrated a potentially clinically viable classifier of esophageal cancer based on saliva methylation.</abstract><cop>England</cop><pub>Future Medicine Ltd</pub><pmid>38226541</pmid><doi>10.2217/epi-2023-0248</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8997-5183</orcidid><orcidid>https://orcid.org/0000-0003-4542-3915</orcidid><orcidid>https://orcid.org/0000-0001-7585-6848</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1750-1911 |
ispartof | Epigenomics, 2024-01, Vol.16 (2), p.109-125 |
issn | 1750-1911 1750-192X 1750-192X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10825730 |
source | PubMed Central |
subjects | biomarker panel diagnosis epigenetics esophageal adenocarcinoma saliva |
title | Using saliva epigenetic data to develop and validate a multivariable predictor of esophageal cancer status |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A34%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20saliva%20epigenetic%20data%20to%20develop%20and%20validate%20a%20multivariable%20predictor%20of%20esophageal%20cancer%20status&rft.jtitle=Epigenomics&rft.au=Stone,%20Timothy%20C&rft.aucorp=SPIT%20Study%20Group%20Collaborators&rft.date=2024-01-01&rft.volume=16&rft.issue=2&rft.spage=109&rft.epage=125&rft.pages=109-125&rft.issn=1750-1911&rft.eissn=1750-192X&rft_id=info:doi/10.2217/epi-2023-0248&rft_dat=%3Cproquest_pubme%3E2915571619%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c394t-9e761501cd9b7ac7c276ea023861b4523fcd49d42d0bc7ed89a9e8b2c4501b103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2915571619&rft_id=info:pmid/38226541&rfr_iscdi=true |