Loading…

CRISPR/Cas9‐mediated mutation of Eil1 transcription factor genes affects exogenous ethylene tolerance and early flower senescence in Campanula portenschlagiana

Summary Improving tolerance to ethylene‐induced early senescence of flowers and fruits is of major economic importance for the ornamental and food industry. Genetic modifications of genes in the ethylene‐signalling pathway have frequently resulted in increased tolerance but often with unwanted side...

Full description

Saved in:
Bibliographic Details
Published in:Plant biotechnology journal 2024-02, Vol.22 (2), p.484-496
Main Authors: Holme, Inger B., Ingvardsen, Christina R., Dionisio, Giuseppe, Podzimska‐Sroka, Dagmara, Kristiansen, Kell, Feilberg, Anders, Brinch‐Pedersen, Henrik
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c4040-872b5bbf5b90fa06084f6e9b8a7255fd808d20e9ffee98db7da10afeb10a2b213
container_end_page 496
container_issue 2
container_start_page 484
container_title Plant biotechnology journal
container_volume 22
creator Holme, Inger B.
Ingvardsen, Christina R.
Dionisio, Giuseppe
Podzimska‐Sroka, Dagmara
Kristiansen, Kell
Feilberg, Anders
Brinch‐Pedersen, Henrik
description Summary Improving tolerance to ethylene‐induced early senescence of flowers and fruits is of major economic importance for the ornamental and food industry. Genetic modifications of genes in the ethylene‐signalling pathway have frequently resulted in increased tolerance but often with unwanted side effects. Here, we used CRISPR/Cas9 to knockout the function of two CpEil1 genes expressed in flowers of the diploid ornamental plant Campanula portenschlagiana. The ethylene tolerance in flowers of the primary mutants with knockout of only one or all four alleles clearly showed increased tolerance to exogenous ethylene, although lower tolerance was obtained with one compared to four mutated alleles. The allele dosage effect was confirmed in progenies where flowers of plants with zero, one, two, three and four mutated alleles showed increasing ethylene tolerance. Mutation of the Cpeil1 alleles had no significant effect on flower longevity and endogenous flower ethylene level, indicating that CpEil1 is not involved in age‐dependent senescence of flowers. The study suggests focus on EIN3/Eils expressed in the organs subjected to early senescence for obtaining tolerance towards exogenous ethylene. Furthermore, the observed allelic dosage effect constitutes a key handle for a gradual regulation of sensitivity towards exogenous ethylene, simultaneously monitoring possibly unwanted side effects.
doi_str_mv 10.1111/pbi.14200
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10826993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919800013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4040-872b5bbf5b90fa06084f6e9b8a7255fd808d20e9ffee98db7da10afeb10a2b213</originalsourceid><addsrcrecordid>eNp1UUtuFDEQbSEQCYEFF0CW2MBiMrb7Z69QaAUYKRJRgLVV3V2eceRuN7abMDuOwBW4GifBkwkjQMILu1T16vlVvSx7yugpS2c5teaUFZzSe9kxK6p6UVclv3-Ii-IoexTCNaWcVWX1MDvKa8HzktfH2Y_mavXh8mrZQJA_v30fsDcQsSfDHCEaNxKnybmxjEQPY-i8mW6zGrroPFnjiIGA1tjFQPCrSwk3pyhutjbVSHQWU2OHBMaeIHi7Jdq6G_Qk7Ho73NXMSBoYJhhnC2RyPmL6amNhbWCEx9kDDTbgk7v3JPv05vxj825x8f7tqjm7WHQFLehC1Lwt21aXraQaaEVFoSuUrYCal6XuBRU9pyiTVpSib-seGAWNbbp5y1l-kr3a805zm9aQlKWRrZq8GcBvlQOj_q6MZqPW7otiVPBKyjwxvLhj8O7zjCGqwaQJrYUR01YUF3VV5ZLxOkGf_wO9drMf03yKSyYFpZTtCF_uUZ13IXjUBzWMqp3zKjmvbp1P2Gd_yj8gf1udAMs94MZY3P6fSV2-Xu0pfwH4V71W</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919800013</pqid></control><display><type>article</type><title>CRISPR/Cas9‐mediated mutation of Eil1 transcription factor genes affects exogenous ethylene tolerance and early flower senescence in Campanula portenschlagiana</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><source>PubMed Central</source><creator>Holme, Inger B. ; Ingvardsen, Christina R. ; Dionisio, Giuseppe ; Podzimska‐Sroka, Dagmara ; Kristiansen, Kell ; Feilberg, Anders ; Brinch‐Pedersen, Henrik</creator><creatorcontrib>Holme, Inger B. ; Ingvardsen, Christina R. ; Dionisio, Giuseppe ; Podzimska‐Sroka, Dagmara ; Kristiansen, Kell ; Feilberg, Anders ; Brinch‐Pedersen, Henrik</creatorcontrib><description>Summary Improving tolerance to ethylene‐induced early senescence of flowers and fruits is of major economic importance for the ornamental and food industry. Genetic modifications of genes in the ethylene‐signalling pathway have frequently resulted in increased tolerance but often with unwanted side effects. Here, we used CRISPR/Cas9 to knockout the function of two CpEil1 genes expressed in flowers of the diploid ornamental plant Campanula portenschlagiana. The ethylene tolerance in flowers of the primary mutants with knockout of only one or all four alleles clearly showed increased tolerance to exogenous ethylene, although lower tolerance was obtained with one compared to four mutated alleles. The allele dosage effect was confirmed in progenies where flowers of plants with zero, one, two, three and four mutated alleles showed increasing ethylene tolerance. Mutation of the Cpeil1 alleles had no significant effect on flower longevity and endogenous flower ethylene level, indicating that CpEil1 is not involved in age‐dependent senescence of flowers. The study suggests focus on EIN3/Eils expressed in the organs subjected to early senescence for obtaining tolerance towards exogenous ethylene. Furthermore, the observed allelic dosage effect constitutes a key handle for a gradual regulation of sensitivity towards exogenous ethylene, simultaneously monitoring possibly unwanted side effects.</description><identifier>ISSN: 1467-7644</identifier><identifier>ISSN: 1467-7652</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.14200</identifier><identifier>PMID: 37823527</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Abiotic stress ; Alleles ; Campanula ; Campanula portenschlagiana ; Campanulaceae - metabolism ; CRISPR ; CRISPR-Cas Systems - genetics ; CRISPR/Cas9 ; Diploids ; Dosage ; Economic importance ; Eil1 transcription factors ; Ethylene ; Ethylene tolerance ; Ethylenes - metabolism ; flower senescence ; Flowers ; Flowers &amp; plants ; Flowers - genetics ; Flowers - metabolism ; Food industry ; Fruits ; Gene Expression Regulation, Plant - genetics ; Genes ; Kinases ; Mutation ; Mutation - genetics ; Ornamental plants ; Plant Senescence ; Plants (botany) ; Proteins ; Senescence ; Side effects ; Signal transduction ; Transcription factors ; Transcription Factors - genetics</subject><ispartof>Plant biotechnology journal, 2024-02, Vol.22 (2), p.484-496</ispartof><rights>2023 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>2023 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4040-872b5bbf5b90fa06084f6e9b8a7255fd808d20e9ffee98db7da10afeb10a2b213</cites><orcidid>0000-0001-5008-0086 ; 0000-0002-9773-8903 ; 0000-0003-4416-0519 ; 0000-0001-5807-1336 ; 0000-0003-0445-5793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2919800013/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919800013?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11561,25752,27923,27924,37011,37012,44589,46051,46475,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37823527$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Holme, Inger B.</creatorcontrib><creatorcontrib>Ingvardsen, Christina R.</creatorcontrib><creatorcontrib>Dionisio, Giuseppe</creatorcontrib><creatorcontrib>Podzimska‐Sroka, Dagmara</creatorcontrib><creatorcontrib>Kristiansen, Kell</creatorcontrib><creatorcontrib>Feilberg, Anders</creatorcontrib><creatorcontrib>Brinch‐Pedersen, Henrik</creatorcontrib><title>CRISPR/Cas9‐mediated mutation of Eil1 transcription factor genes affects exogenous ethylene tolerance and early flower senescence in Campanula portenschlagiana</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary Improving tolerance to ethylene‐induced early senescence of flowers and fruits is of major economic importance for the ornamental and food industry. Genetic modifications of genes in the ethylene‐signalling pathway have frequently resulted in increased tolerance but often with unwanted side effects. Here, we used CRISPR/Cas9 to knockout the function of two CpEil1 genes expressed in flowers of the diploid ornamental plant Campanula portenschlagiana. The ethylene tolerance in flowers of the primary mutants with knockout of only one or all four alleles clearly showed increased tolerance to exogenous ethylene, although lower tolerance was obtained with one compared to four mutated alleles. The allele dosage effect was confirmed in progenies where flowers of plants with zero, one, two, three and four mutated alleles showed increasing ethylene tolerance. Mutation of the Cpeil1 alleles had no significant effect on flower longevity and endogenous flower ethylene level, indicating that CpEil1 is not involved in age‐dependent senescence of flowers. The study suggests focus on EIN3/Eils expressed in the organs subjected to early senescence for obtaining tolerance towards exogenous ethylene. Furthermore, the observed allelic dosage effect constitutes a key handle for a gradual regulation of sensitivity towards exogenous ethylene, simultaneously monitoring possibly unwanted side effects.</description><subject>Abiotic stress</subject><subject>Alleles</subject><subject>Campanula</subject><subject>Campanula portenschlagiana</subject><subject>Campanulaceae - metabolism</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>CRISPR/Cas9</subject><subject>Diploids</subject><subject>Dosage</subject><subject>Economic importance</subject><subject>Eil1 transcription factors</subject><subject>Ethylene</subject><subject>Ethylene tolerance</subject><subject>Ethylenes - metabolism</subject><subject>flower senescence</subject><subject>Flowers</subject><subject>Flowers &amp; plants</subject><subject>Flowers - genetics</subject><subject>Flowers - metabolism</subject><subject>Food industry</subject><subject>Fruits</subject><subject>Gene Expression Regulation, Plant - genetics</subject><subject>Genes</subject><subject>Kinases</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Ornamental plants</subject><subject>Plant Senescence</subject><subject>Plants (botany)</subject><subject>Proteins</subject><subject>Senescence</subject><subject>Side effects</subject><subject>Signal transduction</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><issn>1467-7644</issn><issn>1467-7652</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><recordid>eNp1UUtuFDEQbSEQCYEFF0CW2MBiMrb7Z69QaAUYKRJRgLVV3V2eceRuN7abMDuOwBW4GifBkwkjQMILu1T16vlVvSx7yugpS2c5teaUFZzSe9kxK6p6UVclv3-Ii-IoexTCNaWcVWX1MDvKa8HzktfH2Y_mavXh8mrZQJA_v30fsDcQsSfDHCEaNxKnybmxjEQPY-i8mW6zGrroPFnjiIGA1tjFQPCrSwk3pyhutjbVSHQWU2OHBMaeIHi7Jdq6G_Qk7Ho73NXMSBoYJhhnC2RyPmL6amNhbWCEx9kDDTbgk7v3JPv05vxj825x8f7tqjm7WHQFLehC1Lwt21aXraQaaEVFoSuUrYCal6XuBRU9pyiTVpSib-seGAWNbbp5y1l-kr3a805zm9aQlKWRrZq8GcBvlQOj_q6MZqPW7otiVPBKyjwxvLhj8O7zjCGqwaQJrYUR01YUF3VV5ZLxOkGf_wO9drMf03yKSyYFpZTtCF_uUZ13IXjUBzWMqp3zKjmvbp1P2Gd_yj8gf1udAMs94MZY3P6fSV2-Xu0pfwH4V71W</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Holme, Inger B.</creator><creator>Ingvardsen, Christina R.</creator><creator>Dionisio, Giuseppe</creator><creator>Podzimska‐Sroka, Dagmara</creator><creator>Kristiansen, Kell</creator><creator>Feilberg, Anders</creator><creator>Brinch‐Pedersen, Henrik</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5008-0086</orcidid><orcidid>https://orcid.org/0000-0002-9773-8903</orcidid><orcidid>https://orcid.org/0000-0003-4416-0519</orcidid><orcidid>https://orcid.org/0000-0001-5807-1336</orcidid><orcidid>https://orcid.org/0000-0003-0445-5793</orcidid></search><sort><creationdate>202402</creationdate><title>CRISPR/Cas9‐mediated mutation of Eil1 transcription factor genes affects exogenous ethylene tolerance and early flower senescence in Campanula portenschlagiana</title><author>Holme, Inger B. ; Ingvardsen, Christina R. ; Dionisio, Giuseppe ; Podzimska‐Sroka, Dagmara ; Kristiansen, Kell ; Feilberg, Anders ; Brinch‐Pedersen, Henrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4040-872b5bbf5b90fa06084f6e9b8a7255fd808d20e9ffee98db7da10afeb10a2b213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abiotic stress</topic><topic>Alleles</topic><topic>Campanula</topic><topic>Campanula portenschlagiana</topic><topic>Campanulaceae - metabolism</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>CRISPR/Cas9</topic><topic>Diploids</topic><topic>Dosage</topic><topic>Economic importance</topic><topic>Eil1 transcription factors</topic><topic>Ethylene</topic><topic>Ethylene tolerance</topic><topic>Ethylenes - metabolism</topic><topic>flower senescence</topic><topic>Flowers</topic><topic>Flowers &amp; plants</topic><topic>Flowers - genetics</topic><topic>Flowers - metabolism</topic><topic>Food industry</topic><topic>Fruits</topic><topic>Gene Expression Regulation, Plant - genetics</topic><topic>Genes</topic><topic>Kinases</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Ornamental plants</topic><topic>Plant Senescence</topic><topic>Plants (botany)</topic><topic>Proteins</topic><topic>Senescence</topic><topic>Side effects</topic><topic>Signal transduction</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holme, Inger B.</creatorcontrib><creatorcontrib>Ingvardsen, Christina R.</creatorcontrib><creatorcontrib>Dionisio, Giuseppe</creatorcontrib><creatorcontrib>Podzimska‐Sroka, Dagmara</creatorcontrib><creatorcontrib>Kristiansen, Kell</creatorcontrib><creatorcontrib>Feilberg, Anders</creatorcontrib><creatorcontrib>Brinch‐Pedersen, Henrik</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Free Archive</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holme, Inger B.</au><au>Ingvardsen, Christina R.</au><au>Dionisio, Giuseppe</au><au>Podzimska‐Sroka, Dagmara</au><au>Kristiansen, Kell</au><au>Feilberg, Anders</au><au>Brinch‐Pedersen, Henrik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CRISPR/Cas9‐mediated mutation of Eil1 transcription factor genes affects exogenous ethylene tolerance and early flower senescence in Campanula portenschlagiana</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2024-02</date><risdate>2024</risdate><volume>22</volume><issue>2</issue><spage>484</spage><epage>496</epage><pages>484-496</pages><issn>1467-7644</issn><issn>1467-7652</issn><eissn>1467-7652</eissn><abstract>Summary Improving tolerance to ethylene‐induced early senescence of flowers and fruits is of major economic importance for the ornamental and food industry. Genetic modifications of genes in the ethylene‐signalling pathway have frequently resulted in increased tolerance but often with unwanted side effects. Here, we used CRISPR/Cas9 to knockout the function of two CpEil1 genes expressed in flowers of the diploid ornamental plant Campanula portenschlagiana. The ethylene tolerance in flowers of the primary mutants with knockout of only one or all four alleles clearly showed increased tolerance to exogenous ethylene, although lower tolerance was obtained with one compared to four mutated alleles. The allele dosage effect was confirmed in progenies where flowers of plants with zero, one, two, three and four mutated alleles showed increasing ethylene tolerance. Mutation of the Cpeil1 alleles had no significant effect on flower longevity and endogenous flower ethylene level, indicating that CpEil1 is not involved in age‐dependent senescence of flowers. The study suggests focus on EIN3/Eils expressed in the organs subjected to early senescence for obtaining tolerance towards exogenous ethylene. Furthermore, the observed allelic dosage effect constitutes a key handle for a gradual regulation of sensitivity towards exogenous ethylene, simultaneously monitoring possibly unwanted side effects.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>37823527</pmid><doi>10.1111/pbi.14200</doi><tpages>496</tpages><orcidid>https://orcid.org/0000-0001-5008-0086</orcidid><orcidid>https://orcid.org/0000-0002-9773-8903</orcidid><orcidid>https://orcid.org/0000-0003-4416-0519</orcidid><orcidid>https://orcid.org/0000-0001-5807-1336</orcidid><orcidid>https://orcid.org/0000-0003-0445-5793</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1467-7644
ispartof Plant biotechnology journal, 2024-02, Vol.22 (2), p.484-496
issn 1467-7644
1467-7652
1467-7652
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10826993
source Publicly Available Content Database; Wiley Open Access; PubMed Central
subjects Abiotic stress
Alleles
Campanula
Campanula portenschlagiana
Campanulaceae - metabolism
CRISPR
CRISPR-Cas Systems - genetics
CRISPR/Cas9
Diploids
Dosage
Economic importance
Eil1 transcription factors
Ethylene
Ethylene tolerance
Ethylenes - metabolism
flower senescence
Flowers
Flowers & plants
Flowers - genetics
Flowers - metabolism
Food industry
Fruits
Gene Expression Regulation, Plant - genetics
Genes
Kinases
Mutation
Mutation - genetics
Ornamental plants
Plant Senescence
Plants (botany)
Proteins
Senescence
Side effects
Signal transduction
Transcription factors
Transcription Factors - genetics
title CRISPR/Cas9‐mediated mutation of Eil1 transcription factor genes affects exogenous ethylene tolerance and early flower senescence in Campanula portenschlagiana
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T21%3A25%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CRISPR/Cas9%E2%80%90mediated%20mutation%20of%20Eil1%20transcription%20factor%20genes%20affects%20exogenous%20ethylene%20tolerance%20and%20early%20flower%20senescence%20in%20Campanula%20portenschlagiana&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Holme,%20Inger%20B.&rft.date=2024-02&rft.volume=22&rft.issue=2&rft.spage=484&rft.epage=496&rft.pages=484-496&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.14200&rft_dat=%3Cproquest_pubme%3E2919800013%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4040-872b5bbf5b90fa06084f6e9b8a7255fd808d20e9ffee98db7da10afeb10a2b213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919800013&rft_id=info:pmid/37823527&rfr_iscdi=true