Loading…

Proposal of pharmacophore model for HIV reverse transcriptase inhibitors: Combined mutational effect analysis, molecular dynamics, molecular docking and pharmacophore modeling study

Objectives: Antiretroviral therapy (ART) efficacy is jeopardized by the emergence of drug resistance mutations in HIV, compromising treatment effectiveness. This study aims to propose novel analogs of Effavirenz (EFV) as potential direct inhibitors of HIV reverse transcriptase, employing computer-ai...

Full description

Saved in:
Bibliographic Details
Published in:International journal of immunopathology and pharmacology 2024-01, Vol.38, p.3946320241231465-3946320241231465
Main Authors: Annan, Azzeddine, Raiss, Noureddine, Lemrabet, Sanae, Elomari, Nezha, Elmir, El Harti, Filali-Maltouf, Abdelkarim, Medraoui, Leila, Oumzil, Hicham
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Objectives: Antiretroviral therapy (ART) efficacy is jeopardized by the emergence of drug resistance mutations in HIV, compromising treatment effectiveness. This study aims to propose novel analogs of Effavirenz (EFV) as potential direct inhibitors of HIV reverse transcriptase, employing computer-aided drug design methodologies. Methods: Three key approaches were applied: a mutational profile study, molecular dynamics simulations, and pharmacophore development. The impact of mutations on the stability, flexibility, function, and affinity of target proteins, especially those associated with NRTI, was assessed. Molecular dynamics analysis identified G190E as a mutation significantly altering protein properties, potentially leading to therapeutic failure. Comparative analysis revealed that among six first-line antiretroviral drugs, EFV exhibited notably low affinity with viral reverse transcriptase, further reduced by the G190E mutation. Subsequently, a search for EFV-similar inhibitors yielded 12 promising molecules based on their affinity, forming the basis for generating a pharmacophore model. Results: Mutational analysis pinpointed G190E as a crucial mutation impacting protein properties, potentially undermining therapeutic efficacy. EFV demonstrated diminished affinity with viral reverse transcriptase, exacerbated by the G190E mutation. The search for EFV analogs identified 12 high-affinity molecules, culminating in a pharmacophore model elucidating key structural features crucial for potent inhibition. Conclusion: This study underscores the significance of EFV analogs as potential inhibitors of HIV reverse transcriptase. The findings highlight the impact of mutations on drug efficacy, particularly the detrimental effect of G190E. The generated pharmacophore model serves as a pivotal reference for future drug development efforts targeting HIV, providing essential structural insights for the design of potent inhibitors based on EFV analogs identified in vitro.
ISSN:0394-6320
2058-7384
DOI:10.1177/03946320241231465