Loading…
Mitochondrial alterations Alzheimer's disease
Morphological alterations of mitochondria may be related to metabolic and energy deficiency in neurons in Alzheimer's disease (AD) and other neurodegenerative disorders. In previous studies on the morphological and morphometric estimation of mitochondria in AD, electron microscopy revealed subs...
Saved in:
Published in: | American journal of Alzheimer's disease and other dementias 2004-03, Vol.19 (2), p.89-93 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Morphological alterations of mitochondria may be related to metabolic and energy deficiency in neurons in Alzheimer's disease (AD) and other neurodegenerative disorders. In previous studies on the morphological and morphometric estimation of mitochondria in AD, electron microscopy revealed substantial morphological and morphometric changes in the hippocampus, the acoustic cortex, the frontal cortex, and the cerebellum. This study extends this observation to subcortical centers, namely the thalamus, the globus pallidus, the red nucleus, and the locus caeruleus in 10 brains of patients who suffered from AD. The morphological alterations consisted of very obvious changes of the mitochondrial cristae, accumulation of osmiophilic material and decrease of their size, in comparison with the normal controls. Mitochondrial alterations were particularly prominent in neurons, which showed loss of dendritic spines and abbreviation of the dendritic arborization. The ultrastructural study of a large number of neurons in the thalamus and the red nucleus revealed that the mitochondrial alterations did not coexist with cytoskeletal pathology and accumulation of amyloid deposits. However, they were prominent in neurons, which demonstrated fragmentation of the cisternae of the Golgi apparatus. The morphological alterations of the mitochondria presumably suggest oxidative damage in neurons in AD brains. |
---|---|
ISSN: | 1533-3175 1938-2731 |
DOI: | 10.1177/153331750401900205 |