Loading…
Secured cutting: controlling separase at the metaphase to anaphase transition
The final irreversible step in the duplication and distribution of genomes to daughter cells takes place at the metaphase to anaphase transition. At this point aligned sister chromatid pairs split and separate. During metaphase, cohesion between sister chromatids is maintained by the chromosomal mul...
Saved in:
Published in: | EMBO reports 2001-06, Vol.2 (6), p.487-492 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6492-cc77fb526e9c2a29ede01396caa87c76d3786fe055a702175e64d3f952be54453 |
---|---|
cites | cdi_FETCH-LOGICAL-c6492-cc77fb526e9c2a29ede01396caa87c76d3786fe055a702175e64d3f952be54453 |
container_end_page | 492 |
container_issue | 6 |
container_start_page | 487 |
container_title | EMBO reports |
container_volume | 2 |
creator | Uhlmann, Frank |
description | The final irreversible step in the duplication and distribution of genomes to daughter cells takes place at the metaphase to anaphase transition. At this point aligned sister chromatid pairs split and separate. During metaphase, cohesion between sister chromatids is maintained by the chromosomal multi‐subunit cohesin complex. Here, I review recent findings as to how anaphase is initiated by proteolytic cleavage of the Scc1 subunit of cohesin. Scc1 is cleaved by a site‐specific protease that is conserved in all eukaryotes, and is now called ‘separase’. As a result of this cleavage, the cohesin complex is destroyed, allowing the spindle to pull sister chromatids into opposite halves of the cell. Because of the final and irreversible nature of Scc1 cleavage, this reaction is tightly controlled. Several independent mechanisms seem to impose regulation on Scc1 cleavage, acting on both the activity of separase and the susceptibility of the substrate. |
doi_str_mv | 10.1093/embo-reports/kve113 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1083907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>373532311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6492-cc77fb526e9c2a29ede01396caa87c76d3786fe055a702175e64d3f952be54453</originalsourceid><addsrcrecordid>eNqNkktv1DAUhSMEoqXwC5BQxIJdqB9xbLNAaocyIHUA8VDZWR7nZiZtYgfbKfTf41HCFFh15Wv7O8f36jjLnmL0EiNJj6Ffu8LD4HwMx1fXgDG9lx3ispIFxVzcn2tC8PeD7FEIlwghJrl4mB1gXGImBTrMVl_AjB7q3IwxtnbzKjfORu-6Lm3yAIP2OkCuYx63kPcQ9bDdHUSXa_un9tqGNrbOPs4eNLoL8GRej7Jvb8--Lt4V5x-X7xcn54WpSkkKYzhv1oxUIA3RREINCFNZGa0FN7yqKRdVA4gxzRHBnEFV1rSRjKyBlSWjR9nryXcY1z3UBlLLulODb3vtb5TTrfr3xrZbtXHXCiNBJeLJ4MVs4N2PEUJUfRsMdJ224MagOJIMSyET-Pw_8NKN3qbhFEGC4YoQkSA6Qca7EDw0-04wUrus1C4rNWelpqyS6tnfQ9xq5nASICbgZ9vBzV081dnq9HOJSJKWkzQkld2Av237Ti1ZHdOv2D-5Y_3kW0xAGyL82t9rf6UqTjlTFx-WCouL5afTNwu1or8BAATWcA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208516228</pqid></control><display><type>article</type><title>Secured cutting: controlling separase at the metaphase to anaphase transition</title><source>PubMed (Medline)</source><creator>Uhlmann, Frank</creator><creatorcontrib>Uhlmann, Frank</creatorcontrib><description>The final irreversible step in the duplication and distribution of genomes to daughter cells takes place at the metaphase to anaphase transition. At this point aligned sister chromatid pairs split and separate. During metaphase, cohesion between sister chromatids is maintained by the chromosomal multi‐subunit cohesin complex. Here, I review recent findings as to how anaphase is initiated by proteolytic cleavage of the Scc1 subunit of cohesin. Scc1 is cleaved by a site‐specific protease that is conserved in all eukaryotes, and is now called ‘separase’. As a result of this cleavage, the cohesin complex is destroyed, allowing the spindle to pull sister chromatids into opposite halves of the cell. Because of the final and irreversible nature of Scc1 cleavage, this reaction is tightly controlled. Several independent mechanisms seem to impose regulation on Scc1 cleavage, acting on both the activity of separase and the susceptibility of the substrate.</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.1093/embo-reports/kve113</identifier><identifier>PMID: 11415980</identifier><identifier>CODEN: ERMEAX</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Anaphase ; Animals ; Binding Sites ; Cell Cycle Proteins - chemistry ; Cell Cycle Proteins - physiology ; Chromosomal Proteins, Non-Histone ; Chromosomes - chemistry ; Cohesins ; Fungal Proteins ; Metaphase ; Nuclear Proteins - chemistry ; Phosphoproteins ; Review ; Reviews ; Saccharomyces cerevisiae Proteins</subject><ispartof>EMBO reports, 2001-06, Vol.2 (6), p.487-492</ispartof><rights>European Molecular Biology Organization 2001</rights><rights>Copyright © 2001 European Molecular Biology Organization</rights><rights>Copyright Oxford University Press(England) Jun 15, 2001</rights><rights>Copyright © 2001 European Molecular Biology Organization 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6492-cc77fb526e9c2a29ede01396caa87c76d3786fe055a702175e64d3f952be54453</citedby><cites>FETCH-LOGICAL-c6492-cc77fb526e9c2a29ede01396caa87c76d3786fe055a702175e64d3f952be54453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1083907/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1083907/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27915,27916,53782,53784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11415980$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Uhlmann, Frank</creatorcontrib><title>Secured cutting: controlling separase at the metaphase to anaphase transition</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>The final irreversible step in the duplication and distribution of genomes to daughter cells takes place at the metaphase to anaphase transition. At this point aligned sister chromatid pairs split and separate. During metaphase, cohesion between sister chromatids is maintained by the chromosomal multi‐subunit cohesin complex. Here, I review recent findings as to how anaphase is initiated by proteolytic cleavage of the Scc1 subunit of cohesin. Scc1 is cleaved by a site‐specific protease that is conserved in all eukaryotes, and is now called ‘separase’. As a result of this cleavage, the cohesin complex is destroyed, allowing the spindle to pull sister chromatids into opposite halves of the cell. Because of the final and irreversible nature of Scc1 cleavage, this reaction is tightly controlled. Several independent mechanisms seem to impose regulation on Scc1 cleavage, acting on both the activity of separase and the susceptibility of the substrate.</description><subject>Anaphase</subject><subject>Animals</subject><subject>Binding Sites</subject><subject>Cell Cycle Proteins - chemistry</subject><subject>Cell Cycle Proteins - physiology</subject><subject>Chromosomal Proteins, Non-Histone</subject><subject>Chromosomes - chemistry</subject><subject>Cohesins</subject><subject>Fungal Proteins</subject><subject>Metaphase</subject><subject>Nuclear Proteins - chemistry</subject><subject>Phosphoproteins</subject><subject>Review</subject><subject>Reviews</subject><subject>Saccharomyces cerevisiae Proteins</subject><issn>1469-221X</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqNkktv1DAUhSMEoqXwC5BQxIJdqB9xbLNAaocyIHUA8VDZWR7nZiZtYgfbKfTf41HCFFh15Wv7O8f36jjLnmL0EiNJj6Ffu8LD4HwMx1fXgDG9lx3ispIFxVzcn2tC8PeD7FEIlwghJrl4mB1gXGImBTrMVl_AjB7q3IwxtnbzKjfORu-6Lm3yAIP2OkCuYx63kPcQ9bDdHUSXa_un9tqGNrbOPs4eNLoL8GRej7Jvb8--Lt4V5x-X7xcn54WpSkkKYzhv1oxUIA3RREINCFNZGa0FN7yqKRdVA4gxzRHBnEFV1rSRjKyBlSWjR9nryXcY1z3UBlLLulODb3vtb5TTrfr3xrZbtXHXCiNBJeLJ4MVs4N2PEUJUfRsMdJ224MagOJIMSyET-Pw_8NKN3qbhFEGC4YoQkSA6Qca7EDw0-04wUrus1C4rNWelpqyS6tnfQ9xq5nASICbgZ9vBzV081dnq9HOJSJKWkzQkld2Av237Ti1ZHdOv2D-5Y_3kW0xAGyL82t9rf6UqTjlTFx-WCouL5afTNwu1or8BAATWcA</recordid><startdate>200106</startdate><enddate>200106</enddate><creator>Uhlmann, Frank</creator><general>John Wiley & Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200106</creationdate><title>Secured cutting: controlling separase at the metaphase to anaphase transition</title><author>Uhlmann, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6492-cc77fb526e9c2a29ede01396caa87c76d3786fe055a702175e64d3f952be54453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Anaphase</topic><topic>Animals</topic><topic>Binding Sites</topic><topic>Cell Cycle Proteins - chemistry</topic><topic>Cell Cycle Proteins - physiology</topic><topic>Chromosomal Proteins, Non-Histone</topic><topic>Chromosomes - chemistry</topic><topic>Cohesins</topic><topic>Fungal Proteins</topic><topic>Metaphase</topic><topic>Nuclear Proteins - chemistry</topic><topic>Phosphoproteins</topic><topic>Review</topic><topic>Reviews</topic><topic>Saccharomyces cerevisiae Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uhlmann, Frank</creatorcontrib><collection>Istex</collection><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uhlmann, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Secured cutting: controlling separase at the metaphase to anaphase transition</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2001-06</date><risdate>2001</risdate><volume>2</volume><issue>6</issue><spage>487</spage><epage>492</epage><pages>487-492</pages><issn>1469-221X</issn><eissn>1469-3178</eissn><coden>ERMEAX</coden><abstract>The final irreversible step in the duplication and distribution of genomes to daughter cells takes place at the metaphase to anaphase transition. At this point aligned sister chromatid pairs split and separate. During metaphase, cohesion between sister chromatids is maintained by the chromosomal multi‐subunit cohesin complex. Here, I review recent findings as to how anaphase is initiated by proteolytic cleavage of the Scc1 subunit of cohesin. Scc1 is cleaved by a site‐specific protease that is conserved in all eukaryotes, and is now called ‘separase’. As a result of this cleavage, the cohesin complex is destroyed, allowing the spindle to pull sister chromatids into opposite halves of the cell. Because of the final and irreversible nature of Scc1 cleavage, this reaction is tightly controlled. Several independent mechanisms seem to impose regulation on Scc1 cleavage, acting on both the activity of separase and the susceptibility of the substrate.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>11415980</pmid><doi>10.1093/embo-reports/kve113</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1469-221X |
ispartof | EMBO reports, 2001-06, Vol.2 (6), p.487-492 |
issn | 1469-221X 1469-3178 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1083907 |
source | PubMed (Medline) |
subjects | Anaphase Animals Binding Sites Cell Cycle Proteins - chemistry Cell Cycle Proteins - physiology Chromosomal Proteins, Non-Histone Chromosomes - chemistry Cohesins Fungal Proteins Metaphase Nuclear Proteins - chemistry Phosphoproteins Review Reviews Saccharomyces cerevisiae Proteins |
title | Secured cutting: controlling separase at the metaphase to anaphase transition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A11%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Secured%20cutting:%20controlling%20separase%20at%20the%20metaphase%20to%20anaphase%20transition&rft.jtitle=EMBO%20reports&rft.au=Uhlmann,%20Frank&rft.date=2001-06&rft.volume=2&rft.issue=6&rft.spage=487&rft.epage=492&rft.pages=487-492&rft.issn=1469-221X&rft.eissn=1469-3178&rft.coden=ERMEAX&rft_id=info:doi/10.1093/embo-reports/kve113&rft_dat=%3Cproquest_pubme%3E373532311%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6492-cc77fb526e9c2a29ede01396caa87c76d3786fe055a702175e64d3f952be54453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=208516228&rft_id=info:pmid/11415980&rfr_iscdi=true |