Loading…
In silico identification of novel selenoproteins in the Drosophila melanogaster genome
In selenoproteins, incorporation of the amino acid selenocysteine is specified by the UGA codon, usually a stop signal. The alternative decoding of UGA is conferred by an mRNA structure, the SECIS element, located in the 3′‐untranslated region of the selenoprotein mRNA. Because of the non‐standard u...
Saved in:
Published in: | EMBO reports 2001-08, Vol.2 (8), p.697-702 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In selenoproteins, incorporation of the amino acid selenocysteine is specified by the UGA codon, usually a stop signal. The alternative decoding of UGA is conferred by an mRNA structure, the SECIS element, located in the 3′‐untranslated region of the selenoprotein mRNA. Because of the non‐standard use of the UGA codon, current computational gene prediction methods are unable to identify selenoproteins in the sequence of the eukaryotic genomes. Here we describe a method to predict selenoproteins in genomic sequences, which relies on the prediction of SECIS elements in coordination with the prediction of genes in which the strong codon bias characteristic of protein coding regions extends beyond a TGA codon interrupting the open reading frame. We applied the method to the
Drosophila melanogaster
genome, and predicted four potential selenoprotein genes. One of them belongs to a known family of selenoproteins, and we have tested experimentally two other predictions with positive results. Finally, we have characterized the expression pattern of these two novel selenoprotein genes. |
---|---|
ISSN: | 1469-221X 1469-3178 |
DOI: | 10.1093/embo-reports/kve151 |