Loading…

Using Machine Learning to Understand the Causes of Quantum Decoherence in Solution-Phase Bond-Breaking Reactions

Decoherence is a fundamental phenomenon that occurs when an entangled quantum state interacts with its environment, leading to collapse of the wave function. The inevitability of decoherence provides one of the most intrinsic limits of quantum computing. However, there has been little study of the p...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry letters 2024-01, Vol.15 (4), p.903-911
Main Authors: Mei, Kenneth J., Borrelli, William R., Vong, Andy, Schwartz, Benjamin J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a423t-dd3a1e05570dc0c996d9cfc648420570d14ec777736a91482a3bd17fbd1828c03
container_end_page 911
container_issue 4
container_start_page 903
container_title The journal of physical chemistry letters
container_volume 15
creator Mei, Kenneth J.
Borrelli, William R.
Vong, Andy
Schwartz, Benjamin J.
description Decoherence is a fundamental phenomenon that occurs when an entangled quantum state interacts with its environment, leading to collapse of the wave function. The inevitability of decoherence provides one of the most intrinsic limits of quantum computing. However, there has been little study of the precise chemical motions from the environment that cause decoherence. Here, we use quantum molecular dynamics simulations to explore the photodissociation of Na2 + in liquid Ar, in which solvent fluctuations induce decoherence and thus determine the products of chemical bond breaking. We use machine learning to characterize the solute–solvent environment as a high-dimensional feature space that allows us to predict when and onto which photofragment the bonding electron will localize. We find that reaching a requisite photofragment separation and experiencing out-of-phase solvent collisions underlie decoherence during chemical bond breaking. Our work highlights the utility of machine learning for interpreting complex solution-phase chemical processes as well as identifies the molecular underpinnings of decoherence.
doi_str_mv 10.1021/acs.jpclett.3c03474
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10839908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921119745</sourcerecordid><originalsourceid>FETCH-LOGICAL-a423t-dd3a1e05570dc0c996d9cfc648420570d14ec777736a91482a3bd17fbd1828c03</originalsourceid><addsrcrecordid>eNp9UctuFDEQHCEQCYEvQEIWJy6z8Wt27BMiy1PaKLz2bDk9PRmHWXtje5D4-3jYJQqX-GC3uqvKdlVVvWR0wShnpxbS4noHI-a8EECFbOWj6phpqeqWqebxvfqoepbSNaVLTVX7tDoSikvGGn5c7TbJ-StybmFwHskabfRzIwey8R3GlK3vSB6QrOyUMJHQk2-T9XnakvcIYcCIHpA4T36Eccou-PrrYBOSs-C7-iyi_TXrfUcL8zA9r570dkz44nCeVJuPH36uPtfri09fVu_WtZVc5LrrhGVIm6alHVDQetlp6GEpleR0bjKJ0JYlllYzqbgVlx1r-7IproobJ9Xbve5uutxiB-hztKPZRbe18Y8J1pn_J94N5ir8NowqoYtPReH1XiGk7EwClxEGCN4jZMO5YlqIAnpzuCaGmwlTNluXAMfRegxTMlxzxphuZVOgYg-FGFKK2N89hlEzJ2pKouaQqDkkWliv7v_jjvMvwgI43QP-ssMUfbH1QclbDuSw8Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921119745</pqid></control><display><type>article</type><title>Using Machine Learning to Understand the Causes of Quantum Decoherence in Solution-Phase Bond-Breaking Reactions</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Mei, Kenneth J. ; Borrelli, William R. ; Vong, Andy ; Schwartz, Benjamin J.</creator><creatorcontrib>Mei, Kenneth J. ; Borrelli, William R. ; Vong, Andy ; Schwartz, Benjamin J.</creatorcontrib><description>Decoherence is a fundamental phenomenon that occurs when an entangled quantum state interacts with its environment, leading to collapse of the wave function. The inevitability of decoherence provides one of the most intrinsic limits of quantum computing. However, there has been little study of the precise chemical motions from the environment that cause decoherence. Here, we use quantum molecular dynamics simulations to explore the photodissociation of Na2 + in liquid Ar, in which solvent fluctuations induce decoherence and thus determine the products of chemical bond breaking. We use machine learning to characterize the solute–solvent environment as a high-dimensional feature space that allows us to predict when and onto which photofragment the bonding electron will localize. We find that reaching a requisite photofragment separation and experiencing out-of-phase solvent collisions underlie decoherence during chemical bond breaking. Our work highlights the utility of machine learning for interpreting complex solution-phase chemical processes as well as identifies the molecular underpinnings of decoherence.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.3c03474</identifier><identifier>PMID: 38241152</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Letter ; Physical Insights into Quantum Phenomena and Function</subject><ispartof>The journal of physical chemistry letters, 2024-01, Vol.15 (4), p.903-911</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a423t-dd3a1e05570dc0c996d9cfc648420570d14ec777736a91482a3bd17fbd1828c03</cites><orcidid>0000-0003-3257-9152 ; 0000000332579152</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38241152$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2281933$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mei, Kenneth J.</creatorcontrib><creatorcontrib>Borrelli, William R.</creatorcontrib><creatorcontrib>Vong, Andy</creatorcontrib><creatorcontrib>Schwartz, Benjamin J.</creatorcontrib><title>Using Machine Learning to Understand the Causes of Quantum Decoherence in Solution-Phase Bond-Breaking Reactions</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Decoherence is a fundamental phenomenon that occurs when an entangled quantum state interacts with its environment, leading to collapse of the wave function. The inevitability of decoherence provides one of the most intrinsic limits of quantum computing. However, there has been little study of the precise chemical motions from the environment that cause decoherence. Here, we use quantum molecular dynamics simulations to explore the photodissociation of Na2 + in liquid Ar, in which solvent fluctuations induce decoherence and thus determine the products of chemical bond breaking. We use machine learning to characterize the solute–solvent environment as a high-dimensional feature space that allows us to predict when and onto which photofragment the bonding electron will localize. We find that reaching a requisite photofragment separation and experiencing out-of-phase solvent collisions underlie decoherence during chemical bond breaking. Our work highlights the utility of machine learning for interpreting complex solution-phase chemical processes as well as identifies the molecular underpinnings of decoherence.</description><subject>Letter</subject><subject>Physical Insights into Quantum Phenomena and Function</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UctuFDEQHCEQCYEvQEIWJy6z8Wt27BMiy1PaKLz2bDk9PRmHWXtje5D4-3jYJQqX-GC3uqvKdlVVvWR0wShnpxbS4noHI-a8EECFbOWj6phpqeqWqebxvfqoepbSNaVLTVX7tDoSikvGGn5c7TbJ-StybmFwHskabfRzIwey8R3GlK3vSB6QrOyUMJHQk2-T9XnakvcIYcCIHpA4T36Eccou-PrrYBOSs-C7-iyi_TXrfUcL8zA9r570dkz44nCeVJuPH36uPtfri09fVu_WtZVc5LrrhGVIm6alHVDQetlp6GEpleR0bjKJ0JYlllYzqbgVlx1r-7IproobJ9Xbve5uutxiB-hztKPZRbe18Y8J1pn_J94N5ir8NowqoYtPReH1XiGk7EwClxEGCN4jZMO5YlqIAnpzuCaGmwlTNluXAMfRegxTMlxzxphuZVOgYg-FGFKK2N89hlEzJ2pKouaQqDkkWliv7v_jjvMvwgI43QP-ssMUfbH1QclbDuSw8Q</recordid><startdate>20240119</startdate><enddate>20240119</enddate><creator>Mei, Kenneth J.</creator><creator>Borrelli, William R.</creator><creator>Vong, Andy</creator><creator>Schwartz, Benjamin J.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3257-9152</orcidid><orcidid>https://orcid.org/0000000332579152</orcidid></search><sort><creationdate>20240119</creationdate><title>Using Machine Learning to Understand the Causes of Quantum Decoherence in Solution-Phase Bond-Breaking Reactions</title><author>Mei, Kenneth J. ; Borrelli, William R. ; Vong, Andy ; Schwartz, Benjamin J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a423t-dd3a1e05570dc0c996d9cfc648420570d14ec777736a91482a3bd17fbd1828c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Letter</topic><topic>Physical Insights into Quantum Phenomena and Function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mei, Kenneth J.</creatorcontrib><creatorcontrib>Borrelli, William R.</creatorcontrib><creatorcontrib>Vong, Andy</creatorcontrib><creatorcontrib>Schwartz, Benjamin J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mei, Kenneth J.</au><au>Borrelli, William R.</au><au>Vong, Andy</au><au>Schwartz, Benjamin J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Machine Learning to Understand the Causes of Quantum Decoherence in Solution-Phase Bond-Breaking Reactions</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2024-01-19</date><risdate>2024</risdate><volume>15</volume><issue>4</issue><spage>903</spage><epage>911</epage><pages>903-911</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Decoherence is a fundamental phenomenon that occurs when an entangled quantum state interacts with its environment, leading to collapse of the wave function. The inevitability of decoherence provides one of the most intrinsic limits of quantum computing. However, there has been little study of the precise chemical motions from the environment that cause decoherence. Here, we use quantum molecular dynamics simulations to explore the photodissociation of Na2 + in liquid Ar, in which solvent fluctuations induce decoherence and thus determine the products of chemical bond breaking. We use machine learning to characterize the solute–solvent environment as a high-dimensional feature space that allows us to predict when and onto which photofragment the bonding electron will localize. We find that reaching a requisite photofragment separation and experiencing out-of-phase solvent collisions underlie decoherence during chemical bond breaking. Our work highlights the utility of machine learning for interpreting complex solution-phase chemical processes as well as identifies the molecular underpinnings of decoherence.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38241152</pmid><doi>10.1021/acs.jpclett.3c03474</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3257-9152</orcidid><orcidid>https://orcid.org/0000000332579152</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2024-01, Vol.15 (4), p.903-911
issn 1948-7185
1948-7185
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10839908
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Letter
Physical Insights into Quantum Phenomena and Function
title Using Machine Learning to Understand the Causes of Quantum Decoherence in Solution-Phase Bond-Breaking Reactions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A23%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Machine%20Learning%20to%20Understand%20the%20Causes%20of%20Quantum%20Decoherence%20in%20Solution-Phase%20Bond-Breaking%20Reactions&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Mei,%20Kenneth%20J.&rft.date=2024-01-19&rft.volume=15&rft.issue=4&rft.spage=903&rft.epage=911&rft.pages=903-911&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.3c03474&rft_dat=%3Cproquest_pubme%3E2921119745%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a423t-dd3a1e05570dc0c996d9cfc648420570d14ec777736a91482a3bd17fbd1828c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2921119745&rft_id=info:pmid/38241152&rfr_iscdi=true