Loading…
Using Machine Learning to Understand the Causes of Quantum Decoherence in Solution-Phase Bond-Breaking Reactions
Decoherence is a fundamental phenomenon that occurs when an entangled quantum state interacts with its environment, leading to collapse of the wave function. The inevitability of decoherence provides one of the most intrinsic limits of quantum computing. However, there has been little study of the p...
Saved in:
Published in: | The journal of physical chemistry letters 2024-01, Vol.15 (4), p.903-911 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a423t-dd3a1e05570dc0c996d9cfc648420570d14ec777736a91482a3bd17fbd1828c03 |
container_end_page | 911 |
container_issue | 4 |
container_start_page | 903 |
container_title | The journal of physical chemistry letters |
container_volume | 15 |
creator | Mei, Kenneth J. Borrelli, William R. Vong, Andy Schwartz, Benjamin J. |
description | Decoherence is a fundamental phenomenon that occurs when an entangled quantum state interacts with its environment, leading to collapse of the wave function. The inevitability of decoherence provides one of the most intrinsic limits of quantum computing. However, there has been little study of the precise chemical motions from the environment that cause decoherence. Here, we use quantum molecular dynamics simulations to explore the photodissociation of Na2 + in liquid Ar, in which solvent fluctuations induce decoherence and thus determine the products of chemical bond breaking. We use machine learning to characterize the solute–solvent environment as a high-dimensional feature space that allows us to predict when and onto which photofragment the bonding electron will localize. We find that reaching a requisite photofragment separation and experiencing out-of-phase solvent collisions underlie decoherence during chemical bond breaking. Our work highlights the utility of machine learning for interpreting complex solution-phase chemical processes as well as identifies the molecular underpinnings of decoherence. |
doi_str_mv | 10.1021/acs.jpclett.3c03474 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10839908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921119745</sourcerecordid><originalsourceid>FETCH-LOGICAL-a423t-dd3a1e05570dc0c996d9cfc648420570d14ec777736a91482a3bd17fbd1828c03</originalsourceid><addsrcrecordid>eNp9UctuFDEQHCEQCYEvQEIWJy6z8Wt27BMiy1PaKLz2bDk9PRmHWXtje5D4-3jYJQqX-GC3uqvKdlVVvWR0wShnpxbS4noHI-a8EECFbOWj6phpqeqWqebxvfqoepbSNaVLTVX7tDoSikvGGn5c7TbJ-StybmFwHskabfRzIwey8R3GlK3vSB6QrOyUMJHQk2-T9XnakvcIYcCIHpA4T36Eccou-PrrYBOSs-C7-iyi_TXrfUcL8zA9r570dkz44nCeVJuPH36uPtfri09fVu_WtZVc5LrrhGVIm6alHVDQetlp6GEpleR0bjKJ0JYlllYzqbgVlx1r-7IproobJ9Xbve5uutxiB-hztKPZRbe18Y8J1pn_J94N5ir8NowqoYtPReH1XiGk7EwClxEGCN4jZMO5YlqIAnpzuCaGmwlTNluXAMfRegxTMlxzxphuZVOgYg-FGFKK2N89hlEzJ2pKouaQqDkkWliv7v_jjvMvwgI43QP-ssMUfbH1QclbDuSw8Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921119745</pqid></control><display><type>article</type><title>Using Machine Learning to Understand the Causes of Quantum Decoherence in Solution-Phase Bond-Breaking Reactions</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Mei, Kenneth J. ; Borrelli, William R. ; Vong, Andy ; Schwartz, Benjamin J.</creator><creatorcontrib>Mei, Kenneth J. ; Borrelli, William R. ; Vong, Andy ; Schwartz, Benjamin J.</creatorcontrib><description>Decoherence is a fundamental phenomenon that occurs when an entangled quantum state interacts with its environment, leading to collapse of the wave function. The inevitability of decoherence provides one of the most intrinsic limits of quantum computing. However, there has been little study of the precise chemical motions from the environment that cause decoherence. Here, we use quantum molecular dynamics simulations to explore the photodissociation of Na2 + in liquid Ar, in which solvent fluctuations induce decoherence and thus determine the products of chemical bond breaking. We use machine learning to characterize the solute–solvent environment as a high-dimensional feature space that allows us to predict when and onto which photofragment the bonding electron will localize. We find that reaching a requisite photofragment separation and experiencing out-of-phase solvent collisions underlie decoherence during chemical bond breaking. Our work highlights the utility of machine learning for interpreting complex solution-phase chemical processes as well as identifies the molecular underpinnings of decoherence.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.3c03474</identifier><identifier>PMID: 38241152</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Letter ; Physical Insights into Quantum Phenomena and Function</subject><ispartof>The journal of physical chemistry letters, 2024-01, Vol.15 (4), p.903-911</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a423t-dd3a1e05570dc0c996d9cfc648420570d14ec777736a91482a3bd17fbd1828c03</cites><orcidid>0000-0003-3257-9152 ; 0000000332579152</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38241152$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2281933$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mei, Kenneth J.</creatorcontrib><creatorcontrib>Borrelli, William R.</creatorcontrib><creatorcontrib>Vong, Andy</creatorcontrib><creatorcontrib>Schwartz, Benjamin J.</creatorcontrib><title>Using Machine Learning to Understand the Causes of Quantum Decoherence in Solution-Phase Bond-Breaking Reactions</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Decoherence is a fundamental phenomenon that occurs when an entangled quantum state interacts with its environment, leading to collapse of the wave function. The inevitability of decoherence provides one of the most intrinsic limits of quantum computing. However, there has been little study of the precise chemical motions from the environment that cause decoherence. Here, we use quantum molecular dynamics simulations to explore the photodissociation of Na2 + in liquid Ar, in which solvent fluctuations induce decoherence and thus determine the products of chemical bond breaking. We use machine learning to characterize the solute–solvent environment as a high-dimensional feature space that allows us to predict when and onto which photofragment the bonding electron will localize. We find that reaching a requisite photofragment separation and experiencing out-of-phase solvent collisions underlie decoherence during chemical bond breaking. Our work highlights the utility of machine learning for interpreting complex solution-phase chemical processes as well as identifies the molecular underpinnings of decoherence.</description><subject>Letter</subject><subject>Physical Insights into Quantum Phenomena and Function</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UctuFDEQHCEQCYEvQEIWJy6z8Wt27BMiy1PaKLz2bDk9PRmHWXtje5D4-3jYJQqX-GC3uqvKdlVVvWR0wShnpxbS4noHI-a8EECFbOWj6phpqeqWqebxvfqoepbSNaVLTVX7tDoSikvGGn5c7TbJ-StybmFwHskabfRzIwey8R3GlK3vSB6QrOyUMJHQk2-T9XnakvcIYcCIHpA4T36Eccou-PrrYBOSs-C7-iyi_TXrfUcL8zA9r570dkz44nCeVJuPH36uPtfri09fVu_WtZVc5LrrhGVIm6alHVDQetlp6GEpleR0bjKJ0JYlllYzqbgVlx1r-7IproobJ9Xbve5uutxiB-hztKPZRbe18Y8J1pn_J94N5ir8NowqoYtPReH1XiGk7EwClxEGCN4jZMO5YlqIAnpzuCaGmwlTNluXAMfRegxTMlxzxphuZVOgYg-FGFKK2N89hlEzJ2pKouaQqDkkWliv7v_jjvMvwgI43QP-ssMUfbH1QclbDuSw8Q</recordid><startdate>20240119</startdate><enddate>20240119</enddate><creator>Mei, Kenneth J.</creator><creator>Borrelli, William R.</creator><creator>Vong, Andy</creator><creator>Schwartz, Benjamin J.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3257-9152</orcidid><orcidid>https://orcid.org/0000000332579152</orcidid></search><sort><creationdate>20240119</creationdate><title>Using Machine Learning to Understand the Causes of Quantum Decoherence in Solution-Phase Bond-Breaking Reactions</title><author>Mei, Kenneth J. ; Borrelli, William R. ; Vong, Andy ; Schwartz, Benjamin J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a423t-dd3a1e05570dc0c996d9cfc648420570d14ec777736a91482a3bd17fbd1828c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Letter</topic><topic>Physical Insights into Quantum Phenomena and Function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mei, Kenneth J.</creatorcontrib><creatorcontrib>Borrelli, William R.</creatorcontrib><creatorcontrib>Vong, Andy</creatorcontrib><creatorcontrib>Schwartz, Benjamin J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mei, Kenneth J.</au><au>Borrelli, William R.</au><au>Vong, Andy</au><au>Schwartz, Benjamin J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Machine Learning to Understand the Causes of Quantum Decoherence in Solution-Phase Bond-Breaking Reactions</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2024-01-19</date><risdate>2024</risdate><volume>15</volume><issue>4</issue><spage>903</spage><epage>911</epage><pages>903-911</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Decoherence is a fundamental phenomenon that occurs when an entangled quantum state interacts with its environment, leading to collapse of the wave function. The inevitability of decoherence provides one of the most intrinsic limits of quantum computing. However, there has been little study of the precise chemical motions from the environment that cause decoherence. Here, we use quantum molecular dynamics simulations to explore the photodissociation of Na2 + in liquid Ar, in which solvent fluctuations induce decoherence and thus determine the products of chemical bond breaking. We use machine learning to characterize the solute–solvent environment as a high-dimensional feature space that allows us to predict when and onto which photofragment the bonding electron will localize. We find that reaching a requisite photofragment separation and experiencing out-of-phase solvent collisions underlie decoherence during chemical bond breaking. Our work highlights the utility of machine learning for interpreting complex solution-phase chemical processes as well as identifies the molecular underpinnings of decoherence.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38241152</pmid><doi>10.1021/acs.jpclett.3c03474</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3257-9152</orcidid><orcidid>https://orcid.org/0000000332579152</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2024-01, Vol.15 (4), p.903-911 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10839908 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Letter Physical Insights into Quantum Phenomena and Function |
title | Using Machine Learning to Understand the Causes of Quantum Decoherence in Solution-Phase Bond-Breaking Reactions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A23%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Machine%20Learning%20to%20Understand%20the%20Causes%20of%20Quantum%20Decoherence%20in%20Solution-Phase%20Bond-Breaking%20Reactions&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Mei,%20Kenneth%20J.&rft.date=2024-01-19&rft.volume=15&rft.issue=4&rft.spage=903&rft.epage=911&rft.pages=903-911&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.3c03474&rft_dat=%3Cproquest_pubme%3E2921119745%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a423t-dd3a1e05570dc0c996d9cfc648420570d14ec777736a91482a3bd17fbd1828c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2921119745&rft_id=info:pmid/38241152&rfr_iscdi=true |