Loading…
Point Cloud Registration for Measuring Shape Dependence of Soft Tissue Deformation by Digital Twins in Head and Neck Surgery
Abstract Introduction: A 2½ D point cloud registration method was developed to generate digital twins of different tissue shapes and resection cavities by applying a machine learning (ML) approach. This demonstrates the feasibility of quantifying soft tissue shifts. Methods: An ML model was trained...
Saved in:
Published in: | Biomedicine hub 2024-01, Vol.9 (1), p.9-15 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Introduction: A 2½ D point cloud registration method was developed to generate digital twins of different tissue shapes and resection cavities by applying a machine learning (ML) approach. This demonstrates the feasibility of quantifying soft tissue shifts. Methods: An ML model was trained using simulated surface scan data obtained from tumor resections in a pig head cadaver model. It hereby uses 438 2½ D scans of the tissue surface. Tissue shift was induced by a temperature change from 7.91 ± 4.1°C to 36.37 ± 1.28°C. Results: Digital twins were generated from various branched and compact resection cavities (RCs) and cut tissues (CT). A temperature increase induced a tissue shift with a significant volume increase of 6 mL and 2 mL in branched and compact RCs, respectively (p = 0.0443; 0.0157). The volumes of branched and compact CT were decreased by 3 and 4 mL (p < 0.001). In the warm state, RC and CT no longer fit together because of the significant tissue deformation. Although not significant, the compact RC showed a greater tissue deformation of 1 μL than the branched RC with 0.5 μL induced by the temperature change (p = 0.7874). The branched and compact CT forms responded almost equally to changes in temperature (p = 0.1461). Conclusions: The simulation experiment of induced soft tissue deformation using digital twins based on 2½ D point cloud models proved that our method helps to quantify shape-dependent tissue shifts. |
---|---|
ISSN: | 2296-6870 2296-6862 2296-6870 |
DOI: | 10.1159/000535421 |