Loading…

Muscle Spasms after Spinal Cord Injury Stem from Changes in Motoneuron Excitability and Synaptic Inhibition, Not Synaptic Excitation

Muscle spasms are common in chronic spinal cord injury (SCI), posing challenges to rehabilitation and daily activities. Pharmacological management of spasms mostly targets suppression of excitatory inputs, an approach known to hinder motor recovery. To identify better targets, we investigated change...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2024-01, Vol.44 (1), p.e1695232023
Main Authors: Mahrous, Amr, Birch, Derin, Heckman, C J, Tysseling, Vicki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Muscle spasms are common in chronic spinal cord injury (SCI), posing challenges to rehabilitation and daily activities. Pharmacological management of spasms mostly targets suppression of excitatory inputs, an approach known to hinder motor recovery. To identify better targets, we investigated changes in inhibitory and excitatory synaptic inputs to motoneurons as well as motoneuron excitability in chronic SCI. We induced either a complete or incomplete SCI in adult mice of either sex and divided those with incomplete injury into low or high functional recovery groups. Their sacrocaudal spinal cords were then extracted and used to study plasticity below injury, with tissue from naive animals as a control. Electrical stimulation of the dorsal roots elicited spasm-like activity in preparations of chronic severe SCI but not in the control. To evaluate overall synaptic inhibition activated by sensory stimulation, we measured the rate-dependent depression of spinal root reflexes. We found inhibitory inputs to be impaired in chronic injury models. When synaptic inhibition was blocked pharmacologically, all preparations became clearly spastic, even the control. However, preparations with chronic injuries generated longer spasms than control. We then measured excitatory postsynaptic currents (EPSCs) in motoneurons during sensory-evoked spasms. The data showed no difference in the amplitude of EPSCs or their conductance among animal groups. Nonetheless, we found that motoneuron persistent inward currents activated by the EPSCs were increased in chronic SCI. These findings suggest that changes in motoneuron excitability and synaptic inhibition, rather than excitation, contribute to spasms and are better suited for more effective therapeutic interventions. Neural plasticity following spinal cord injury is crucial for recovery of motor function. Unfortunately, this process is blemished by maladaptive changes that can cause muscle spasms. Pharmacological alleviation of spasms without compromising the recovery of motor function has proven to be challenging. Here, we investigated changes in fundamental spinal mechanisms that can cause spasms post-injury. Our data suggest that the current management strategy for spasms is misdirected toward suppressing excitatory inputs, a mechanism that we found unaltered after injury, which can lead to further motor weakness. Instead, this study shows that more promising approaches might involve restoring synaptic inhibition or modulating
ISSN:0270-6474
1529-2401
1529-2401
DOI:10.1523/JNEUROSCI.1695-23.2023