Loading…

In Situ Single-crystal X‑ray Diffraction Studies of Physisorption and Chemisorption of SO2 within a Metal–Organic Framework and Its Competitive Adsorption with Water

Living on an increasingly polluted planet, the removal of toxic pollutants such as sulfur dioxide (SO2) from the troposphere and power station flue gas is becoming more and more important. The CPO-27/MOF-74 family of metal–organic frameworks (MOFs) with their high densities of open metal sites is we...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2024-02, Vol.146 (5), p.3270-3278
Main Authors: Main, Russell M., Vornholt, Simon M., Ettlinger, Romy, Netzsch, Philip, Stanzione, Maximillian G., Rice, Cameron M., Elliott, Caroline, Russell, Samantha E., Warren, Mark R., Ashbrook, Sharon E., Morris, Russell E.
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Living on an increasingly polluted planet, the removal of toxic pollutants such as sulfur dioxide (SO2) from the troposphere and power station flue gas is becoming more and more important. The CPO-27/MOF-74 family of metal–organic frameworks (MOFs) with their high densities of open metal sites is well suited for the selective adsorption of gases that, like SO2, bind well to metals and have been extensively researched both practically and through computer simulations. However, until now, focus has centered upon the binding of SO2 to the open metal sites in this MOF (called chemisorption, where the adsorbent–adsorbate interaction is through a chemical bond). The possibility of physisorption (where the adsorbent–adsorbate interaction is only through weak intermolecular forces) has not been identified experimentally. This work presents an in situ single-crystal X-ray diffraction (scXRD) study that identifies discrete adsorption sites within Ni-MOF-74/Ni-CPO-27, where SO2 is both chemisorbed and physisorbed while also probing competitive adsorption of SO2 of these sites when water is present. Further features of this site have been confirmed by variable SO2 pressure scXRD studies, DFT calculations, and IR studies.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.3c11847