Loading…

Unraveling the pH-Dependent Oxygen Reduction Performance on Single-Atom Catalysts: From Single- to Dual-Sabatier Optima

Metal–nitrogen–carbon (M–N–C) single-atom catalysts (SACs) have emerged as a potential substitute for the costly platinum-group catalysts in oxygen reduction reaction (ORR). However, several critical aspects of M–N–C SACs in ORR remain poorly understood, including their pH-dependent activity, select...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2024-02, Vol.146 (5), p.3210-3219
Main Authors: Zhang, Di, Wang, Zhuyu, Liu, Fangzhou, Yi, Peiyun, Peng, Linfa, Chen, Yuan, Wei, Li, Li, Hao
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a418t-62cebc4a040cfd5277586c40c6d119684334a1af01481cf4e25b71d1ba8ad893
cites cdi_FETCH-LOGICAL-a418t-62cebc4a040cfd5277586c40c6d119684334a1af01481cf4e25b71d1ba8ad893
container_end_page 3219
container_issue 5
container_start_page 3210
container_title Journal of the American Chemical Society
container_volume 146
creator Zhang, Di
Wang, Zhuyu
Liu, Fangzhou
Yi, Peiyun
Peng, Linfa
Chen, Yuan
Wei, Li
Li, Hao
description Metal–nitrogen–carbon (M–N–C) single-atom catalysts (SACs) have emerged as a potential substitute for the costly platinum-group catalysts in oxygen reduction reaction (ORR). However, several critical aspects of M–N–C SACs in ORR remain poorly understood, including their pH-dependent activity, selectivity for 2- or 4-electron transfer pathways, and the identification of the rate-determining steps. Herein, by analyzing >100 M–N–C structures and >2000 sets of energetics, we unveil a pH-dependent evolution in ORR activity volcanosfrom a single peak in alkaline media to a double peak in acids. We found that this pH-dependent behavior in M–N–C catalysts fundamentally stems from their moderate dipole moments and polarizability for O* and HOO* adsorbates, as well as unique scaling relations among ORR adsorbates. To validate our theoretical discovery, we synthesized a series of molecular M–N–C catalysts, each characterized by well-defined atomic coordination environments. Impressively, the experiments matched our theoretical predictions on kinetic current, Tafel slope, and turnover frequency in both acidic and alkaline environments. These new insights also refine the famous Sabatier principle by emphasizing the need to avoid an “acid trap” while designing M–N–C catalysts for ORR or any other pH-dependent electrochemical applications.
doi_str_mv 10.1021/jacs.3c11246
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10859957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923325134</sourcerecordid><originalsourceid>FETCH-LOGICAL-a418t-62cebc4a040cfd5277586c40c6d119684334a1af01481cf4e25b71d1ba8ad893</originalsourceid><addsrcrecordid>eNptUcFu1DAQtRAV3RZunJGPHJricZzE4YKqbUuRKm1Fy9lynMk2q8QOtlPYv8erLoVKPY2e5s2bN_MIeQ_sFBiHTxttwmluALgoX5EFFJxlBfDyNVkwxnhWyTI_JEchbBIUXMIbcphLDoJXxYL8-mG9fsCht2sa75FOV9k5TmhbtJGufm_XaOl3bGcTe2fpDfrO-VFbgzTB2zQ1YHYW3UiXOuphG2L4TC99wvsejY6ez3rIbnWjY4-erqbYj_otOej0EPDdvh6Tu8uLu-VVdr36-m15dp1pATJmJTfYGKGZYKZrC15VhSxNAmULUJdS5LnQoDsGQoLpBPKiqaCFRkvdyjo_Jl8eZae5GbE16SqvBzX5ZMFvldO9et6x_b1auwcFTBZ1XVRJ4eNewbufM4aoxj4YHAZt0c1B8ZrnOS8gF4l68kg13oXgsXvaA0ztslK7rNQ-q0T_8L-3J_LfcP6t3k1t3Oxt-tTLWn8AVMienQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923325134</pqid></control><display><type>article</type><title>Unraveling the pH-Dependent Oxygen Reduction Performance on Single-Atom Catalysts: From Single- to Dual-Sabatier Optima</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Zhang, Di ; Wang, Zhuyu ; Liu, Fangzhou ; Yi, Peiyun ; Peng, Linfa ; Chen, Yuan ; Wei, Li ; Li, Hao</creator><creatorcontrib>Zhang, Di ; Wang, Zhuyu ; Liu, Fangzhou ; Yi, Peiyun ; Peng, Linfa ; Chen, Yuan ; Wei, Li ; Li, Hao</creatorcontrib><description>Metal–nitrogen–carbon (M–N–C) single-atom catalysts (SACs) have emerged as a potential substitute for the costly platinum-group catalysts in oxygen reduction reaction (ORR). However, several critical aspects of M–N–C SACs in ORR remain poorly understood, including their pH-dependent activity, selectivity for 2- or 4-electron transfer pathways, and the identification of the rate-determining steps. Herein, by analyzing &gt;100 M–N–C structures and &gt;2000 sets of energetics, we unveil a pH-dependent evolution in ORR activity volcanosfrom a single peak in alkaline media to a double peak in acids. We found that this pH-dependent behavior in M–N–C catalysts fundamentally stems from their moderate dipole moments and polarizability for O* and HOO* adsorbates, as well as unique scaling relations among ORR adsorbates. To validate our theoretical discovery, we synthesized a series of molecular M–N–C catalysts, each characterized by well-defined atomic coordination environments. Impressively, the experiments matched our theoretical predictions on kinetic current, Tafel slope, and turnover frequency in both acidic and alkaline environments. These new insights also refine the famous Sabatier principle by emphasizing the need to avoid an “acid trap” while designing M–N–C catalysts for ORR or any other pH-dependent electrochemical applications.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.3c11246</identifier><identifier>PMID: 38214275</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2024-02, Vol.146 (5), p.3210-3219</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a418t-62cebc4a040cfd5277586c40c6d119684334a1af01481cf4e25b71d1ba8ad893</citedby><cites>FETCH-LOGICAL-a418t-62cebc4a040cfd5277586c40c6d119684334a1af01481cf4e25b71d1ba8ad893</cites><orcidid>0000-0001-6347-9344 ; 0000-0001-9059-3839 ; 0000-0001-9204-5481 ; 0000-0002-7577-1366 ; 0000-0001-8771-2921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38214275$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Wang, Zhuyu</creatorcontrib><creatorcontrib>Liu, Fangzhou</creatorcontrib><creatorcontrib>Yi, Peiyun</creatorcontrib><creatorcontrib>Peng, Linfa</creatorcontrib><creatorcontrib>Chen, Yuan</creatorcontrib><creatorcontrib>Wei, Li</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><title>Unraveling the pH-Dependent Oxygen Reduction Performance on Single-Atom Catalysts: From Single- to Dual-Sabatier Optima</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Metal–nitrogen–carbon (M–N–C) single-atom catalysts (SACs) have emerged as a potential substitute for the costly platinum-group catalysts in oxygen reduction reaction (ORR). However, several critical aspects of M–N–C SACs in ORR remain poorly understood, including their pH-dependent activity, selectivity for 2- or 4-electron transfer pathways, and the identification of the rate-determining steps. Herein, by analyzing &gt;100 M–N–C structures and &gt;2000 sets of energetics, we unveil a pH-dependent evolution in ORR activity volcanosfrom a single peak in alkaline media to a double peak in acids. We found that this pH-dependent behavior in M–N–C catalysts fundamentally stems from their moderate dipole moments and polarizability for O* and HOO* adsorbates, as well as unique scaling relations among ORR adsorbates. To validate our theoretical discovery, we synthesized a series of molecular M–N–C catalysts, each characterized by well-defined atomic coordination environments. Impressively, the experiments matched our theoretical predictions on kinetic current, Tafel slope, and turnover frequency in both acidic and alkaline environments. These new insights also refine the famous Sabatier principle by emphasizing the need to avoid an “acid trap” while designing M–N–C catalysts for ORR or any other pH-dependent electrochemical applications.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptUcFu1DAQtRAV3RZunJGPHJricZzE4YKqbUuRKm1Fy9lynMk2q8QOtlPYv8erLoVKPY2e5s2bN_MIeQ_sFBiHTxttwmluALgoX5EFFJxlBfDyNVkwxnhWyTI_JEchbBIUXMIbcphLDoJXxYL8-mG9fsCht2sa75FOV9k5TmhbtJGufm_XaOl3bGcTe2fpDfrO-VFbgzTB2zQ1YHYW3UiXOuphG2L4TC99wvsejY6ez3rIbnWjY4-erqbYj_otOej0EPDdvh6Tu8uLu-VVdr36-m15dp1pATJmJTfYGKGZYKZrC15VhSxNAmULUJdS5LnQoDsGQoLpBPKiqaCFRkvdyjo_Jl8eZae5GbE16SqvBzX5ZMFvldO9et6x_b1auwcFTBZ1XVRJ4eNewbufM4aoxj4YHAZt0c1B8ZrnOS8gF4l68kg13oXgsXvaA0ztslK7rNQ-q0T_8L-3J_LfcP6t3k1t3Oxt-tTLWn8AVMienQ</recordid><startdate>20240207</startdate><enddate>20240207</enddate><creator>Zhang, Di</creator><creator>Wang, Zhuyu</creator><creator>Liu, Fangzhou</creator><creator>Yi, Peiyun</creator><creator>Peng, Linfa</creator><creator>Chen, Yuan</creator><creator>Wei, Li</creator><creator>Li, Hao</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6347-9344</orcidid><orcidid>https://orcid.org/0000-0001-9059-3839</orcidid><orcidid>https://orcid.org/0000-0001-9204-5481</orcidid><orcidid>https://orcid.org/0000-0002-7577-1366</orcidid><orcidid>https://orcid.org/0000-0001-8771-2921</orcidid></search><sort><creationdate>20240207</creationdate><title>Unraveling the pH-Dependent Oxygen Reduction Performance on Single-Atom Catalysts: From Single- to Dual-Sabatier Optima</title><author>Zhang, Di ; Wang, Zhuyu ; Liu, Fangzhou ; Yi, Peiyun ; Peng, Linfa ; Chen, Yuan ; Wei, Li ; Li, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a418t-62cebc4a040cfd5277586c40c6d119684334a1af01481cf4e25b71d1ba8ad893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Wang, Zhuyu</creatorcontrib><creatorcontrib>Liu, Fangzhou</creatorcontrib><creatorcontrib>Yi, Peiyun</creatorcontrib><creatorcontrib>Peng, Linfa</creatorcontrib><creatorcontrib>Chen, Yuan</creatorcontrib><creatorcontrib>Wei, Li</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Di</au><au>Wang, Zhuyu</au><au>Liu, Fangzhou</au><au>Yi, Peiyun</au><au>Peng, Linfa</au><au>Chen, Yuan</au><au>Wei, Li</au><au>Li, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling the pH-Dependent Oxygen Reduction Performance on Single-Atom Catalysts: From Single- to Dual-Sabatier Optima</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2024-02-07</date><risdate>2024</risdate><volume>146</volume><issue>5</issue><spage>3210</spage><epage>3219</epage><pages>3210-3219</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Metal–nitrogen–carbon (M–N–C) single-atom catalysts (SACs) have emerged as a potential substitute for the costly platinum-group catalysts in oxygen reduction reaction (ORR). However, several critical aspects of M–N–C SACs in ORR remain poorly understood, including their pH-dependent activity, selectivity for 2- or 4-electron transfer pathways, and the identification of the rate-determining steps. Herein, by analyzing &gt;100 M–N–C structures and &gt;2000 sets of energetics, we unveil a pH-dependent evolution in ORR activity volcanosfrom a single peak in alkaline media to a double peak in acids. We found that this pH-dependent behavior in M–N–C catalysts fundamentally stems from their moderate dipole moments and polarizability for O* and HOO* adsorbates, as well as unique scaling relations among ORR adsorbates. To validate our theoretical discovery, we synthesized a series of molecular M–N–C catalysts, each characterized by well-defined atomic coordination environments. Impressively, the experiments matched our theoretical predictions on kinetic current, Tafel slope, and turnover frequency in both acidic and alkaline environments. These new insights also refine the famous Sabatier principle by emphasizing the need to avoid an “acid trap” while designing M–N–C catalysts for ORR or any other pH-dependent electrochemical applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38214275</pmid><doi>10.1021/jacs.3c11246</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6347-9344</orcidid><orcidid>https://orcid.org/0000-0001-9059-3839</orcidid><orcidid>https://orcid.org/0000-0001-9204-5481</orcidid><orcidid>https://orcid.org/0000-0002-7577-1366</orcidid><orcidid>https://orcid.org/0000-0001-8771-2921</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2024-02, Vol.146 (5), p.3210-3219
issn 0002-7863
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10859957
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Unraveling the pH-Dependent Oxygen Reduction Performance on Single-Atom Catalysts: From Single- to Dual-Sabatier Optima
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A48%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20the%20pH-Dependent%20Oxygen%20Reduction%20Performance%20on%20Single-Atom%20Catalysts:%20From%20Single-%20to%20Dual-Sabatier%20Optima&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Zhang,%20Di&rft.date=2024-02-07&rft.volume=146&rft.issue=5&rft.spage=3210&rft.epage=3219&rft.pages=3210-3219&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.3c11246&rft_dat=%3Cproquest_pubme%3E2923325134%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a418t-62cebc4a040cfd5277586c40c6d119684334a1af01481cf4e25b71d1ba8ad893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2923325134&rft_id=info:pmid/38214275&rfr_iscdi=true