Loading…

Disruption of lysosomal nutrient sensing scaffold contributes to pathogenesis of a fatal neurodegenerative lysosomal storage disease

The ceroid lipofuscinosis neuronal 1 (CLN1) disease, formerly called infantile neuronal ceroid lipofuscinosis, is a fatal hereditary neurodegenerative lysosomal storage disorder. This disease is caused by loss-of-function mutations in the CLN1 gene, encoding palmitoyl-protein thioesterase-1 (PPT1)....

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2024-02, Vol.300 (2), p.105641-105641, Article 105641
Main Authors: Bagh, Maria B., Appu, Abhilash P., Sadhukhan, Tamal, Mondal, Avisek, Plavelil, Nisha, Raghavankutty, Mahadevan, Supran, Ajayan M., Sadhukhan, Sriparna, Liu, Aiyi, Mukherjee, Anil B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c361t-850bec1c42653b3f3ec1888cdbe389afd238874a2a6c5d9352c6ee2f4a3d81373
container_end_page 105641
container_issue 2
container_start_page 105641
container_title The Journal of biological chemistry
container_volume 300
creator Bagh, Maria B.
Appu, Abhilash P.
Sadhukhan, Tamal
Mondal, Avisek
Plavelil, Nisha
Raghavankutty, Mahadevan
Supran, Ajayan M.
Sadhukhan, Sriparna
Liu, Aiyi
Mukherjee, Anil B.
description The ceroid lipofuscinosis neuronal 1 (CLN1) disease, formerly called infantile neuronal ceroid lipofuscinosis, is a fatal hereditary neurodegenerative lysosomal storage disorder. This disease is caused by loss-of-function mutations in the CLN1 gene, encoding palmitoyl-protein thioesterase-1 (PPT1). PPT1 catalyzes depalmitoylation of S-palmitoylated proteins for degradation and clearance by lysosomal hydrolases. Numerous proteins, especially in the brain, require dynamic S-palmitoylation (palmitoylation-depalmitoylation cycles) for endosomal trafficking to their destination. While 23 palmitoyl-acyl transferases in the mammalian genome catalyze S-palmitoylation, depalmitoylation is catalyzed by thioesterases such as PPT1. Despite these discoveries, the pathogenic mechanism of CLN1 disease has remained elusive. Here, we report that in the brain of Cln1−/− mice, which mimic CLN1 disease, the mechanistic target of rapamycin complex-1 (mTORC1) kinase is hyperactivated. The activation of mTORC1 by nutrients requires its anchorage to lysosomal limiting membrane by Rag GTPases and Ragulator complex. These proteins form the lysosomal nutrient sensing scaffold to which mTORC1 must attach to activate. We found that in Cln1−/− mice, two constituent proteins of the Ragulator complex (vacuolar (H+)-ATPase and Lamtor1) require dynamic S-palmitoylation for endosomal trafficking to the lysosomal limiting membrane. Intriguingly, Ppt1 deficiency in Cln1−/− mice misrouted these proteins to the plasma membrane disrupting the lysosomal nutrient sensing scaffold. Despite this defect, mTORC1 was hyperactivated via the IGF1/PI3K/Akt-signaling pathway, which suppressed autophagy contributing to neuropathology. Importantly, pharmacological inhibition of PI3K/Akt suppressed mTORC1 activation, restored autophagy, and ameliorated neurodegeneration in Cln1−/− mice. Our findings reveal a previously unrecognized role of Cln1/Ppt1 in regulating mTORC1 activation and suggest that IGF1/PI3K/Akt may be a targetable pathway for CLN1 disease.
doi_str_mv 10.1016/j.jbc.2024.105641
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10862020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925824000176</els_id><sourcerecordid>2922952022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-850bec1c42653b3f3ec1888cdbe389afd238874a2a6c5d9352c6ee2f4a3d81373</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EotvCB-CCfOSSrf8kqSMOCBVoK1XiAhI3y7HHW6-y9uJxVuqdD15HW6pywRdr9N78xp5HyDvO1pzx_ny73o52LZhoa931LX9BVpwp2ciO_3pJVowJ3gyiUyfkFHHL6mkH_pqcSCU4V7xfkT9fAuZ5X0KKNHk63WPCtDMTjXPJAWKhCBFD3FC0xvs0OWpTrNI4F0BaEt2bcpc2EAEDLghDvSkLAOacHCxKNiUc4BkcS8pmA9QFBIPwhrzyZkJ4-3ifkZ_fvv64vG5uv1_dXH6-bazseWlUx0aw3Lai7-QovayFUsq6EaQajHdCKnXRGmF627lBdsL2AMK3RjrF5YU8I5-O3P087sDZ-r1sJr3PYWfyvU4m6H-VGO70Jh10XWpf18wq4cMjIaffM2DRu4AWpslESDNqMQgxdNUqqpUfrTYnxAz-aQ5neolPb3WNTy_x6WN8tef98wc-dfzNqxo-Hg1Q13QIkDXampIFFzLYol0K_8E_AJsAsAM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922952022</pqid></control><display><type>article</type><title>Disruption of lysosomal nutrient sensing scaffold contributes to pathogenesis of a fatal neurodegenerative lysosomal storage disease</title><source>ScienceDirect (Online service)</source><source>PubMed Central</source><creator>Bagh, Maria B. ; Appu, Abhilash P. ; Sadhukhan, Tamal ; Mondal, Avisek ; Plavelil, Nisha ; Raghavankutty, Mahadevan ; Supran, Ajayan M. ; Sadhukhan, Sriparna ; Liu, Aiyi ; Mukherjee, Anil B.</creator><creatorcontrib>Bagh, Maria B. ; Appu, Abhilash P. ; Sadhukhan, Tamal ; Mondal, Avisek ; Plavelil, Nisha ; Raghavankutty, Mahadevan ; Supran, Ajayan M. ; Sadhukhan, Sriparna ; Liu, Aiyi ; Mukherjee, Anil B.</creatorcontrib><description>The ceroid lipofuscinosis neuronal 1 (CLN1) disease, formerly called infantile neuronal ceroid lipofuscinosis, is a fatal hereditary neurodegenerative lysosomal storage disorder. This disease is caused by loss-of-function mutations in the CLN1 gene, encoding palmitoyl-protein thioesterase-1 (PPT1). PPT1 catalyzes depalmitoylation of S-palmitoylated proteins for degradation and clearance by lysosomal hydrolases. Numerous proteins, especially in the brain, require dynamic S-palmitoylation (palmitoylation-depalmitoylation cycles) for endosomal trafficking to their destination. While 23 palmitoyl-acyl transferases in the mammalian genome catalyze S-palmitoylation, depalmitoylation is catalyzed by thioesterases such as PPT1. Despite these discoveries, the pathogenic mechanism of CLN1 disease has remained elusive. Here, we report that in the brain of Cln1−/− mice, which mimic CLN1 disease, the mechanistic target of rapamycin complex-1 (mTORC1) kinase is hyperactivated. The activation of mTORC1 by nutrients requires its anchorage to lysosomal limiting membrane by Rag GTPases and Ragulator complex. These proteins form the lysosomal nutrient sensing scaffold to which mTORC1 must attach to activate. We found that in Cln1−/− mice, two constituent proteins of the Ragulator complex (vacuolar (H+)-ATPase and Lamtor1) require dynamic S-palmitoylation for endosomal trafficking to the lysosomal limiting membrane. Intriguingly, Ppt1 deficiency in Cln1−/− mice misrouted these proteins to the plasma membrane disrupting the lysosomal nutrient sensing scaffold. Despite this defect, mTORC1 was hyperactivated via the IGF1/PI3K/Akt-signaling pathway, which suppressed autophagy contributing to neuropathology. Importantly, pharmacological inhibition of PI3K/Akt suppressed mTORC1 activation, restored autophagy, and ameliorated neurodegeneration in Cln1−/− mice. Our findings reveal a previously unrecognized role of Cln1/Ppt1 in regulating mTORC1 activation and suggest that IGF1/PI3K/Akt may be a targetable pathway for CLN1 disease.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2024.105641</identifier><identifier>PMID: 38211816</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>CLN1 disease ; IGF1 signaling ; lysosomal storage disease ; mTORC1 activation ; neurodegeneration ; S-palmitoylation</subject><ispartof>The Journal of biological chemistry, 2024-02, Vol.300 (2), p.105641-105641, Article 105641</ispartof><rights>2024</rights><rights>Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c361t-850bec1c42653b3f3ec1888cdbe389afd238874a2a6c5d9352c6ee2f4a3d81373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10862020/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925824000176$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3535,27903,27904,45759,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38211816$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bagh, Maria B.</creatorcontrib><creatorcontrib>Appu, Abhilash P.</creatorcontrib><creatorcontrib>Sadhukhan, Tamal</creatorcontrib><creatorcontrib>Mondal, Avisek</creatorcontrib><creatorcontrib>Plavelil, Nisha</creatorcontrib><creatorcontrib>Raghavankutty, Mahadevan</creatorcontrib><creatorcontrib>Supran, Ajayan M.</creatorcontrib><creatorcontrib>Sadhukhan, Sriparna</creatorcontrib><creatorcontrib>Liu, Aiyi</creatorcontrib><creatorcontrib>Mukherjee, Anil B.</creatorcontrib><title>Disruption of lysosomal nutrient sensing scaffold contributes to pathogenesis of a fatal neurodegenerative lysosomal storage disease</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The ceroid lipofuscinosis neuronal 1 (CLN1) disease, formerly called infantile neuronal ceroid lipofuscinosis, is a fatal hereditary neurodegenerative lysosomal storage disorder. This disease is caused by loss-of-function mutations in the CLN1 gene, encoding palmitoyl-protein thioesterase-1 (PPT1). PPT1 catalyzes depalmitoylation of S-palmitoylated proteins for degradation and clearance by lysosomal hydrolases. Numerous proteins, especially in the brain, require dynamic S-palmitoylation (palmitoylation-depalmitoylation cycles) for endosomal trafficking to their destination. While 23 palmitoyl-acyl transferases in the mammalian genome catalyze S-palmitoylation, depalmitoylation is catalyzed by thioesterases such as PPT1. Despite these discoveries, the pathogenic mechanism of CLN1 disease has remained elusive. Here, we report that in the brain of Cln1−/− mice, which mimic CLN1 disease, the mechanistic target of rapamycin complex-1 (mTORC1) kinase is hyperactivated. The activation of mTORC1 by nutrients requires its anchorage to lysosomal limiting membrane by Rag GTPases and Ragulator complex. These proteins form the lysosomal nutrient sensing scaffold to which mTORC1 must attach to activate. We found that in Cln1−/− mice, two constituent proteins of the Ragulator complex (vacuolar (H+)-ATPase and Lamtor1) require dynamic S-palmitoylation for endosomal trafficking to the lysosomal limiting membrane. Intriguingly, Ppt1 deficiency in Cln1−/− mice misrouted these proteins to the plasma membrane disrupting the lysosomal nutrient sensing scaffold. Despite this defect, mTORC1 was hyperactivated via the IGF1/PI3K/Akt-signaling pathway, which suppressed autophagy contributing to neuropathology. Importantly, pharmacological inhibition of PI3K/Akt suppressed mTORC1 activation, restored autophagy, and ameliorated neurodegeneration in Cln1−/− mice. Our findings reveal a previously unrecognized role of Cln1/Ppt1 in regulating mTORC1 activation and suggest that IGF1/PI3K/Akt may be a targetable pathway for CLN1 disease.</description><subject>CLN1 disease</subject><subject>IGF1 signaling</subject><subject>lysosomal storage disease</subject><subject>mTORC1 activation</subject><subject>neurodegeneration</subject><subject>S-palmitoylation</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v1DAQxS0EotvCB-CCfOSSrf8kqSMOCBVoK1XiAhI3y7HHW6-y9uJxVuqdD15HW6pywRdr9N78xp5HyDvO1pzx_ny73o52LZhoa931LX9BVpwp2ciO_3pJVowJ3gyiUyfkFHHL6mkH_pqcSCU4V7xfkT9fAuZ5X0KKNHk63WPCtDMTjXPJAWKhCBFD3FC0xvs0OWpTrNI4F0BaEt2bcpc2EAEDLghDvSkLAOacHCxKNiUc4BkcS8pmA9QFBIPwhrzyZkJ4-3ifkZ_fvv64vG5uv1_dXH6-bazseWlUx0aw3Lai7-QovayFUsq6EaQajHdCKnXRGmF627lBdsL2AMK3RjrF5YU8I5-O3P087sDZ-r1sJr3PYWfyvU4m6H-VGO70Jh10XWpf18wq4cMjIaffM2DRu4AWpslESDNqMQgxdNUqqpUfrTYnxAz-aQ5neolPb3WNTy_x6WN8tef98wc-dfzNqxo-Hg1Q13QIkDXampIFFzLYol0K_8E_AJsAsAM</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Bagh, Maria B.</creator><creator>Appu, Abhilash P.</creator><creator>Sadhukhan, Tamal</creator><creator>Mondal, Avisek</creator><creator>Plavelil, Nisha</creator><creator>Raghavankutty, Mahadevan</creator><creator>Supran, Ajayan M.</creator><creator>Sadhukhan, Sriparna</creator><creator>Liu, Aiyi</creator><creator>Mukherjee, Anil B.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240201</creationdate><title>Disruption of lysosomal nutrient sensing scaffold contributes to pathogenesis of a fatal neurodegenerative lysosomal storage disease</title><author>Bagh, Maria B. ; Appu, Abhilash P. ; Sadhukhan, Tamal ; Mondal, Avisek ; Plavelil, Nisha ; Raghavankutty, Mahadevan ; Supran, Ajayan M. ; Sadhukhan, Sriparna ; Liu, Aiyi ; Mukherjee, Anil B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-850bec1c42653b3f3ec1888cdbe389afd238874a2a6c5d9352c6ee2f4a3d81373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CLN1 disease</topic><topic>IGF1 signaling</topic><topic>lysosomal storage disease</topic><topic>mTORC1 activation</topic><topic>neurodegeneration</topic><topic>S-palmitoylation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagh, Maria B.</creatorcontrib><creatorcontrib>Appu, Abhilash P.</creatorcontrib><creatorcontrib>Sadhukhan, Tamal</creatorcontrib><creatorcontrib>Mondal, Avisek</creatorcontrib><creatorcontrib>Plavelil, Nisha</creatorcontrib><creatorcontrib>Raghavankutty, Mahadevan</creatorcontrib><creatorcontrib>Supran, Ajayan M.</creatorcontrib><creatorcontrib>Sadhukhan, Sriparna</creatorcontrib><creatorcontrib>Liu, Aiyi</creatorcontrib><creatorcontrib>Mukherjee, Anil B.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagh, Maria B.</au><au>Appu, Abhilash P.</au><au>Sadhukhan, Tamal</au><au>Mondal, Avisek</au><au>Plavelil, Nisha</au><au>Raghavankutty, Mahadevan</au><au>Supran, Ajayan M.</au><au>Sadhukhan, Sriparna</au><au>Liu, Aiyi</au><au>Mukherjee, Anil B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disruption of lysosomal nutrient sensing scaffold contributes to pathogenesis of a fatal neurodegenerative lysosomal storage disease</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>300</volume><issue>2</issue><spage>105641</spage><epage>105641</epage><pages>105641-105641</pages><artnum>105641</artnum><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The ceroid lipofuscinosis neuronal 1 (CLN1) disease, formerly called infantile neuronal ceroid lipofuscinosis, is a fatal hereditary neurodegenerative lysosomal storage disorder. This disease is caused by loss-of-function mutations in the CLN1 gene, encoding palmitoyl-protein thioesterase-1 (PPT1). PPT1 catalyzes depalmitoylation of S-palmitoylated proteins for degradation and clearance by lysosomal hydrolases. Numerous proteins, especially in the brain, require dynamic S-palmitoylation (palmitoylation-depalmitoylation cycles) for endosomal trafficking to their destination. While 23 palmitoyl-acyl transferases in the mammalian genome catalyze S-palmitoylation, depalmitoylation is catalyzed by thioesterases such as PPT1. Despite these discoveries, the pathogenic mechanism of CLN1 disease has remained elusive. Here, we report that in the brain of Cln1−/− mice, which mimic CLN1 disease, the mechanistic target of rapamycin complex-1 (mTORC1) kinase is hyperactivated. The activation of mTORC1 by nutrients requires its anchorage to lysosomal limiting membrane by Rag GTPases and Ragulator complex. These proteins form the lysosomal nutrient sensing scaffold to which mTORC1 must attach to activate. We found that in Cln1−/− mice, two constituent proteins of the Ragulator complex (vacuolar (H+)-ATPase and Lamtor1) require dynamic S-palmitoylation for endosomal trafficking to the lysosomal limiting membrane. Intriguingly, Ppt1 deficiency in Cln1−/− mice misrouted these proteins to the plasma membrane disrupting the lysosomal nutrient sensing scaffold. Despite this defect, mTORC1 was hyperactivated via the IGF1/PI3K/Akt-signaling pathway, which suppressed autophagy contributing to neuropathology. Importantly, pharmacological inhibition of PI3K/Akt suppressed mTORC1 activation, restored autophagy, and ameliorated neurodegeneration in Cln1−/− mice. Our findings reveal a previously unrecognized role of Cln1/Ppt1 in regulating mTORC1 activation and suggest that IGF1/PI3K/Akt may be a targetable pathway for CLN1 disease.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38211816</pmid><doi>10.1016/j.jbc.2024.105641</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2024-02, Vol.300 (2), p.105641-105641, Article 105641
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10862020
source ScienceDirect (Online service); PubMed Central
subjects CLN1 disease
IGF1 signaling
lysosomal storage disease
mTORC1 activation
neurodegeneration
S-palmitoylation
title Disruption of lysosomal nutrient sensing scaffold contributes to pathogenesis of a fatal neurodegenerative lysosomal storage disease
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A45%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disruption%20of%20lysosomal%20nutrient%20sensing%20scaffold%20contributes%20to%20pathogenesis%20of%20a%20fatal%20neurodegenerative%20lysosomal%20storage%20disease&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Bagh,%20Maria%20B.&rft.date=2024-02-01&rft.volume=300&rft.issue=2&rft.spage=105641&rft.epage=105641&rft.pages=105641-105641&rft.artnum=105641&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2024.105641&rft_dat=%3Cproquest_pubme%3E2922952022%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-850bec1c42653b3f3ec1888cdbe389afd238874a2a6c5d9352c6ee2f4a3d81373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2922952022&rft_id=info:pmid/38211816&rfr_iscdi=true