Loading…

The untapped potential of phage model systems as therapeutic agents

Abstract With the emergence of widespread antibiotic resistance, phages are an appealing alternative to antibiotics in the fight against multidrug-resistant bacteria. Over the past few years, many phages have been isolated from various environments to treat bacterial pathogens. While isolating novel...

Full description

Saved in:
Bibliographic Details
Published in:Virus evolution 2024, Vol.10 (1), p.veae007-veae007
Main Authors: Romeyer Dherbey, Jordan, Bertels, Frederic
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract With the emergence of widespread antibiotic resistance, phages are an appealing alternative to antibiotics in the fight against multidrug-resistant bacteria. Over the past few years, many phages have been isolated from various environments to treat bacterial pathogens. While isolating novel phages for treatment has had some success for compassionate use, developing novel phages into a general therapeutic will require considerable time and financial resource investments. These investments may be less significant for well-established phage model systems. The knowledge acquired from decades of research on their structure, life cycle, and evolution ensures safe application and efficient handling. However, one major downside of the established phage model systems is their inability to infect pathogenic bacteria. This problem is not insurmountable; phage host range can be extended through genetic engineering or evolution experiments. In the future, breeding model phages to infect pathogens could provide a new avenue to develop phage therapeutic agents.
ISSN:2057-1577
2057-1577
DOI:10.1093/ve/veae007