Loading…
Transcriptomics, proteomics, and metabolomics interventions prompt crop improvement against metal(loid) toxicity
The escalating challenges posed by metal(loid) toxicity in agricultural ecosystems, exacerbated by rapid climate change and anthropogenic pressures, demand urgent attention. Soil contamination is a critical issue because it significantly impacts crop productivity. The widespread threat of metal(loid...
Saved in:
Published in: | Plant cell reports 2024-03, Vol.43 (3), p.80-80, Article 80 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c475t-26465591413aa086cb07573053b53f34a4459b93f965cf110962c1dc0901553c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c475t-26465591413aa086cb07573053b53f34a4459b93f965cf110962c1dc0901553c3 |
container_end_page | 80 |
container_issue | 3 |
container_start_page | 80 |
container_title | Plant cell reports |
container_volume | 43 |
creator | Raza, Ali Salehi, Hajar Bashir, Shanza Tabassum, Javaria Jamla, Monica Charagh, Sidra Barmukh, Rutwik Mir, Rakeeb Ahmad Bhat, Basharat Ahmad Javed, Muhammad Arshad Guan, Dong-Xing Mir, Reyazul Rouf Siddique, Kadambot H. M. Varshney, Rajeev K. |
description | The escalating challenges posed by metal(loid) toxicity in agricultural ecosystems, exacerbated by rapid climate change and anthropogenic pressures, demand urgent attention. Soil contamination is a critical issue because it significantly impacts crop productivity. The widespread threat of metal(loid) toxicity can jeopardize global food security due to contaminated food supplies and pose environmental risks, contributing to soil and water pollution and thus impacting the whole ecosystem. In this context, plants have evolved complex mechanisms to combat metal(loid) stress. Amid the array of innovative approaches, omics, notably transcriptomics, proteomics, and metabolomics, have emerged as transformative tools, shedding light on the genes, proteins, and key metabolites involved in metal(loid) stress responses and tolerance mechanisms. These identified candidates hold promise for developing high-yielding crops with desirable agronomic traits. Computational biology tools like bioinformatics, biological databases, and analytical pipelines support these omics approaches by harnessing diverse information and facilitating the mapping of genotype-to-phenotype relationships under stress conditions. This review explores: (1) the multifaceted strategies that plants use to adapt to metal(loid) toxicity in their environment; (2) the latest findings in metal(loid)-mediated transcriptomics, proteomics, and metabolomics studies across various plant species; (3) the integration of omics data with artificial intelligence and high-throughput phenotyping; (4) the latest bioinformatics databases, tools and pipelines for single and/or multi-omics data integration; (5) the latest insights into stress adaptations and tolerance mechanisms for future outlooks; and (6) the capacity of omics advances for creating sustainable and resilient crop plants that can thrive in metal(loid)-contaminated environments. |
doi_str_mv | 10.1007/s00299-024-03153-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10899315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932481044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-26465591413aa086cb07573053b53f34a4459b93f965cf110962c1dc0901553c3</originalsourceid><addsrcrecordid>eNp9kctu1DAUhq2qqJ0OvEAXKFI3RSJwfIvjFUIVBaRKbIrEznI8zuAqsVPbM6Jvj2cytNAFK1_-71x_hM4xvMMA4n0CIFLWQFgNFHNaiyO0wIySmgD9cYwWIAiuhcDsFJ2ldAdQRNGcoFPaMowFpgs03Ubtk4luymF0Jr2tphiyPdy1X1WjzboLw_6ncj7buLU-u-DTDh2nXJkYpsqN5bW1Y9EqvdbOp7wPHS6H4FZvqhx-OePyw0v0otdDsq8O5xJ9v_50e_Wlvvn2-evVx5vaMMFzTRrWcC4xw1RraBvTgeCCAqcdpz1lmjEuO0l72XDTYwyyIQavDEjAnFNDl-jDnHfadKNdmdJX1IOaoht1fFBBO_Wv4t1PtQ5bhaGVcrfOJbo8ZIjhfmNTVqNLxg6D9jZskiKSkrJPgLagF8_Qu7CJvsw3Uy0GxgpFZqosLKVo-8duMKido2p2VBVH1d5RJUrQ67_neAz5Y2EB6AykIvm1jU-1_5P2NyYfrYY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932481044</pqid></control><display><type>article</type><title>Transcriptomics, proteomics, and metabolomics interventions prompt crop improvement against metal(loid) toxicity</title><source>Springer Link</source><creator>Raza, Ali ; Salehi, Hajar ; Bashir, Shanza ; Tabassum, Javaria ; Jamla, Monica ; Charagh, Sidra ; Barmukh, Rutwik ; Mir, Rakeeb Ahmad ; Bhat, Basharat Ahmad ; Javed, Muhammad Arshad ; Guan, Dong-Xing ; Mir, Reyazul Rouf ; Siddique, Kadambot H. M. ; Varshney, Rajeev K.</creator><creatorcontrib>Raza, Ali ; Salehi, Hajar ; Bashir, Shanza ; Tabassum, Javaria ; Jamla, Monica ; Charagh, Sidra ; Barmukh, Rutwik ; Mir, Rakeeb Ahmad ; Bhat, Basharat Ahmad ; Javed, Muhammad Arshad ; Guan, Dong-Xing ; Mir, Reyazul Rouf ; Siddique, Kadambot H. M. ; Varshney, Rajeev K.</creatorcontrib><description>The escalating challenges posed by metal(loid) toxicity in agricultural ecosystems, exacerbated by rapid climate change and anthropogenic pressures, demand urgent attention. Soil contamination is a critical issue because it significantly impacts crop productivity. The widespread threat of metal(loid) toxicity can jeopardize global food security due to contaminated food supplies and pose environmental risks, contributing to soil and water pollution and thus impacting the whole ecosystem. In this context, plants have evolved complex mechanisms to combat metal(loid) stress. Amid the array of innovative approaches, omics, notably transcriptomics, proteomics, and metabolomics, have emerged as transformative tools, shedding light on the genes, proteins, and key metabolites involved in metal(loid) stress responses and tolerance mechanisms. These identified candidates hold promise for developing high-yielding crops with desirable agronomic traits. Computational biology tools like bioinformatics, biological databases, and analytical pipelines support these omics approaches by harnessing diverse information and facilitating the mapping of genotype-to-phenotype relationships under stress conditions. This review explores: (1) the multifaceted strategies that plants use to adapt to metal(loid) toxicity in their environment; (2) the latest findings in metal(loid)-mediated transcriptomics, proteomics, and metabolomics studies across various plant species; (3) the integration of omics data with artificial intelligence and high-throughput phenotyping; (4) the latest bioinformatics databases, tools and pipelines for single and/or multi-omics data integration; (5) the latest insights into stress adaptations and tolerance mechanisms for future outlooks; and (6) the capacity of omics advances for creating sustainable and resilient crop plants that can thrive in metal(loid)-contaminated environments.</description><identifier>ISSN: 0721-7714</identifier><identifier>EISSN: 1432-203X</identifier><identifier>DOI: 10.1007/s00299-024-03153-7</identifier><identifier>PMID: 38411713</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agricultural ecosystems ; Agronomic crops ; Anthropogenic factors ; Artificial Intelligence ; Bioinformatics ; Biomedical and Life Sciences ; Biotechnology ; Cell Biology ; Cellular stress response ; Climate change ; Crop improvement ; Crop production ; Crop resilience ; Crops ; Data integration ; Ecosystem ; Environmental risk ; Food contamination ; Food contamination & poisoning ; Food security ; Food supply ; Gene Expression Profiling ; Genotypes ; Human influences ; Life Sciences ; Metabolites ; Metabolomics ; Metals ; Metals - toxicity ; Phenotypes ; Phenotyping ; Pipelines ; Plant Biochemistry ; Plant Sciences ; Plant species ; Plants (botany) ; Proteomics ; Review ; Software ; Soil ; Soil contamination ; Soil pollution ; Soil water ; Toxicity ; Transcriptomics ; Water pollution</subject><ispartof>Plant cell reports, 2024-03, Vol.43 (3), p.80-80, Article 80</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-26465591413aa086cb07573053b53f34a4459b93f965cf110962c1dc0901553c3</citedby><cites>FETCH-LOGICAL-c475t-26465591413aa086cb07573053b53f34a4459b93f965cf110962c1dc0901553c3</cites><orcidid>0000-0001-8578-9423 ; 0000-0002-8077-7324 ; 0000-0001-6097-4235 ; 0000-0002-9797-0681 ; 0000-0001-5745-8539 ; 0000-0002-3196-211X ; 0000-0002-2740-8992 ; 0000-0002-6275-9798 ; 0000-0002-7254-2349 ; 0000-0002-4562-9131 ; 0000-0002-5120-2791 ; 0000-0003-4709-9389</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38411713$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Raza, Ali</creatorcontrib><creatorcontrib>Salehi, Hajar</creatorcontrib><creatorcontrib>Bashir, Shanza</creatorcontrib><creatorcontrib>Tabassum, Javaria</creatorcontrib><creatorcontrib>Jamla, Monica</creatorcontrib><creatorcontrib>Charagh, Sidra</creatorcontrib><creatorcontrib>Barmukh, Rutwik</creatorcontrib><creatorcontrib>Mir, Rakeeb Ahmad</creatorcontrib><creatorcontrib>Bhat, Basharat Ahmad</creatorcontrib><creatorcontrib>Javed, Muhammad Arshad</creatorcontrib><creatorcontrib>Guan, Dong-Xing</creatorcontrib><creatorcontrib>Mir, Reyazul Rouf</creatorcontrib><creatorcontrib>Siddique, Kadambot H. M.</creatorcontrib><creatorcontrib>Varshney, Rajeev K.</creatorcontrib><title>Transcriptomics, proteomics, and metabolomics interventions prompt crop improvement against metal(loid) toxicity</title><title>Plant cell reports</title><addtitle>Plant Cell Rep</addtitle><addtitle>Plant Cell Rep</addtitle><description>The escalating challenges posed by metal(loid) toxicity in agricultural ecosystems, exacerbated by rapid climate change and anthropogenic pressures, demand urgent attention. Soil contamination is a critical issue because it significantly impacts crop productivity. The widespread threat of metal(loid) toxicity can jeopardize global food security due to contaminated food supplies and pose environmental risks, contributing to soil and water pollution and thus impacting the whole ecosystem. In this context, plants have evolved complex mechanisms to combat metal(loid) stress. Amid the array of innovative approaches, omics, notably transcriptomics, proteomics, and metabolomics, have emerged as transformative tools, shedding light on the genes, proteins, and key metabolites involved in metal(loid) stress responses and tolerance mechanisms. These identified candidates hold promise for developing high-yielding crops with desirable agronomic traits. Computational biology tools like bioinformatics, biological databases, and analytical pipelines support these omics approaches by harnessing diverse information and facilitating the mapping of genotype-to-phenotype relationships under stress conditions. This review explores: (1) the multifaceted strategies that plants use to adapt to metal(loid) toxicity in their environment; (2) the latest findings in metal(loid)-mediated transcriptomics, proteomics, and metabolomics studies across various plant species; (3) the integration of omics data with artificial intelligence and high-throughput phenotyping; (4) the latest bioinformatics databases, tools and pipelines for single and/or multi-omics data integration; (5) the latest insights into stress adaptations and tolerance mechanisms for future outlooks; and (6) the capacity of omics advances for creating sustainable and resilient crop plants that can thrive in metal(loid)-contaminated environments.</description><subject>Agricultural ecosystems</subject><subject>Agronomic crops</subject><subject>Anthropogenic factors</subject><subject>Artificial Intelligence</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cell Biology</subject><subject>Cellular stress response</subject><subject>Climate change</subject><subject>Crop improvement</subject><subject>Crop production</subject><subject>Crop resilience</subject><subject>Crops</subject><subject>Data integration</subject><subject>Ecosystem</subject><subject>Environmental risk</subject><subject>Food contamination</subject><subject>Food contamination & poisoning</subject><subject>Food security</subject><subject>Food supply</subject><subject>Gene Expression Profiling</subject><subject>Genotypes</subject><subject>Human influences</subject><subject>Life Sciences</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>Metals</subject><subject>Metals - toxicity</subject><subject>Phenotypes</subject><subject>Phenotyping</subject><subject>Pipelines</subject><subject>Plant Biochemistry</subject><subject>Plant Sciences</subject><subject>Plant species</subject><subject>Plants (botany)</subject><subject>Proteomics</subject><subject>Review</subject><subject>Software</subject><subject>Soil</subject><subject>Soil contamination</subject><subject>Soil pollution</subject><subject>Soil water</subject><subject>Toxicity</subject><subject>Transcriptomics</subject><subject>Water pollution</subject><issn>0721-7714</issn><issn>1432-203X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kctu1DAUhq2qqJ0OvEAXKFI3RSJwfIvjFUIVBaRKbIrEznI8zuAqsVPbM6Jvj2cytNAFK1_-71x_hM4xvMMA4n0CIFLWQFgNFHNaiyO0wIySmgD9cYwWIAiuhcDsFJ2ldAdQRNGcoFPaMowFpgs03Ubtk4luymF0Jr2tphiyPdy1X1WjzboLw_6ncj7buLU-u-DTDh2nXJkYpsqN5bW1Y9EqvdbOp7wPHS6H4FZvqhx-OePyw0v0otdDsq8O5xJ9v_50e_Wlvvn2-evVx5vaMMFzTRrWcC4xw1RraBvTgeCCAqcdpz1lmjEuO0l72XDTYwyyIQavDEjAnFNDl-jDnHfadKNdmdJX1IOaoht1fFBBO_Wv4t1PtQ5bhaGVcrfOJbo8ZIjhfmNTVqNLxg6D9jZskiKSkrJPgLagF8_Qu7CJvsw3Uy0GxgpFZqosLKVo-8duMKido2p2VBVH1d5RJUrQ67_neAz5Y2EB6AykIvm1jU-1_5P2NyYfrYY</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Raza, Ali</creator><creator>Salehi, Hajar</creator><creator>Bashir, Shanza</creator><creator>Tabassum, Javaria</creator><creator>Jamla, Monica</creator><creator>Charagh, Sidra</creator><creator>Barmukh, Rutwik</creator><creator>Mir, Rakeeb Ahmad</creator><creator>Bhat, Basharat Ahmad</creator><creator>Javed, Muhammad Arshad</creator><creator>Guan, Dong-Xing</creator><creator>Mir, Reyazul Rouf</creator><creator>Siddique, Kadambot H. M.</creator><creator>Varshney, Rajeev K.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8578-9423</orcidid><orcidid>https://orcid.org/0000-0002-8077-7324</orcidid><orcidid>https://orcid.org/0000-0001-6097-4235</orcidid><orcidid>https://orcid.org/0000-0002-9797-0681</orcidid><orcidid>https://orcid.org/0000-0001-5745-8539</orcidid><orcidid>https://orcid.org/0000-0002-3196-211X</orcidid><orcidid>https://orcid.org/0000-0002-2740-8992</orcidid><orcidid>https://orcid.org/0000-0002-6275-9798</orcidid><orcidid>https://orcid.org/0000-0002-7254-2349</orcidid><orcidid>https://orcid.org/0000-0002-4562-9131</orcidid><orcidid>https://orcid.org/0000-0002-5120-2791</orcidid><orcidid>https://orcid.org/0000-0003-4709-9389</orcidid></search><sort><creationdate>20240301</creationdate><title>Transcriptomics, proteomics, and metabolomics interventions prompt crop improvement against metal(loid) toxicity</title><author>Raza, Ali ; Salehi, Hajar ; Bashir, Shanza ; Tabassum, Javaria ; Jamla, Monica ; Charagh, Sidra ; Barmukh, Rutwik ; Mir, Rakeeb Ahmad ; Bhat, Basharat Ahmad ; Javed, Muhammad Arshad ; Guan, Dong-Xing ; Mir, Reyazul Rouf ; Siddique, Kadambot H. M. ; Varshney, Rajeev K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-26465591413aa086cb07573053b53f34a4459b93f965cf110962c1dc0901553c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural ecosystems</topic><topic>Agronomic crops</topic><topic>Anthropogenic factors</topic><topic>Artificial Intelligence</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cell Biology</topic><topic>Cellular stress response</topic><topic>Climate change</topic><topic>Crop improvement</topic><topic>Crop production</topic><topic>Crop resilience</topic><topic>Crops</topic><topic>Data integration</topic><topic>Ecosystem</topic><topic>Environmental risk</topic><topic>Food contamination</topic><topic>Food contamination & poisoning</topic><topic>Food security</topic><topic>Food supply</topic><topic>Gene Expression Profiling</topic><topic>Genotypes</topic><topic>Human influences</topic><topic>Life Sciences</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>Metals</topic><topic>Metals - toxicity</topic><topic>Phenotypes</topic><topic>Phenotyping</topic><topic>Pipelines</topic><topic>Plant Biochemistry</topic><topic>Plant Sciences</topic><topic>Plant species</topic><topic>Plants (botany)</topic><topic>Proteomics</topic><topic>Review</topic><topic>Software</topic><topic>Soil</topic><topic>Soil contamination</topic><topic>Soil pollution</topic><topic>Soil water</topic><topic>Toxicity</topic><topic>Transcriptomics</topic><topic>Water pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raza, Ali</creatorcontrib><creatorcontrib>Salehi, Hajar</creatorcontrib><creatorcontrib>Bashir, Shanza</creatorcontrib><creatorcontrib>Tabassum, Javaria</creatorcontrib><creatorcontrib>Jamla, Monica</creatorcontrib><creatorcontrib>Charagh, Sidra</creatorcontrib><creatorcontrib>Barmukh, Rutwik</creatorcontrib><creatorcontrib>Mir, Rakeeb Ahmad</creatorcontrib><creatorcontrib>Bhat, Basharat Ahmad</creatorcontrib><creatorcontrib>Javed, Muhammad Arshad</creatorcontrib><creatorcontrib>Guan, Dong-Xing</creatorcontrib><creatorcontrib>Mir, Reyazul Rouf</creatorcontrib><creatorcontrib>Siddique, Kadambot H. M.</creatorcontrib><creatorcontrib>Varshney, Rajeev K.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant cell reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raza, Ali</au><au>Salehi, Hajar</au><au>Bashir, Shanza</au><au>Tabassum, Javaria</au><au>Jamla, Monica</au><au>Charagh, Sidra</au><au>Barmukh, Rutwik</au><au>Mir, Rakeeb Ahmad</au><au>Bhat, Basharat Ahmad</au><au>Javed, Muhammad Arshad</au><au>Guan, Dong-Xing</au><au>Mir, Reyazul Rouf</au><au>Siddique, Kadambot H. M.</au><au>Varshney, Rajeev K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptomics, proteomics, and metabolomics interventions prompt crop improvement against metal(loid) toxicity</atitle><jtitle>Plant cell reports</jtitle><stitle>Plant Cell Rep</stitle><addtitle>Plant Cell Rep</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>43</volume><issue>3</issue><spage>80</spage><epage>80</epage><pages>80-80</pages><artnum>80</artnum><issn>0721-7714</issn><eissn>1432-203X</eissn><abstract>The escalating challenges posed by metal(loid) toxicity in agricultural ecosystems, exacerbated by rapid climate change and anthropogenic pressures, demand urgent attention. Soil contamination is a critical issue because it significantly impacts crop productivity. The widespread threat of metal(loid) toxicity can jeopardize global food security due to contaminated food supplies and pose environmental risks, contributing to soil and water pollution and thus impacting the whole ecosystem. In this context, plants have evolved complex mechanisms to combat metal(loid) stress. Amid the array of innovative approaches, omics, notably transcriptomics, proteomics, and metabolomics, have emerged as transformative tools, shedding light on the genes, proteins, and key metabolites involved in metal(loid) stress responses and tolerance mechanisms. These identified candidates hold promise for developing high-yielding crops with desirable agronomic traits. Computational biology tools like bioinformatics, biological databases, and analytical pipelines support these omics approaches by harnessing diverse information and facilitating the mapping of genotype-to-phenotype relationships under stress conditions. This review explores: (1) the multifaceted strategies that plants use to adapt to metal(loid) toxicity in their environment; (2) the latest findings in metal(loid)-mediated transcriptomics, proteomics, and metabolomics studies across various plant species; (3) the integration of omics data with artificial intelligence and high-throughput phenotyping; (4) the latest bioinformatics databases, tools and pipelines for single and/or multi-omics data integration; (5) the latest insights into stress adaptations and tolerance mechanisms for future outlooks; and (6) the capacity of omics advances for creating sustainable and resilient crop plants that can thrive in metal(loid)-contaminated environments.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38411713</pmid><doi>10.1007/s00299-024-03153-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8578-9423</orcidid><orcidid>https://orcid.org/0000-0002-8077-7324</orcidid><orcidid>https://orcid.org/0000-0001-6097-4235</orcidid><orcidid>https://orcid.org/0000-0002-9797-0681</orcidid><orcidid>https://orcid.org/0000-0001-5745-8539</orcidid><orcidid>https://orcid.org/0000-0002-3196-211X</orcidid><orcidid>https://orcid.org/0000-0002-2740-8992</orcidid><orcidid>https://orcid.org/0000-0002-6275-9798</orcidid><orcidid>https://orcid.org/0000-0002-7254-2349</orcidid><orcidid>https://orcid.org/0000-0002-4562-9131</orcidid><orcidid>https://orcid.org/0000-0002-5120-2791</orcidid><orcidid>https://orcid.org/0000-0003-4709-9389</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0721-7714 |
ispartof | Plant cell reports, 2024-03, Vol.43 (3), p.80-80, Article 80 |
issn | 0721-7714 1432-203X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10899315 |
source | Springer Link |
subjects | Agricultural ecosystems Agronomic crops Anthropogenic factors Artificial Intelligence Bioinformatics Biomedical and Life Sciences Biotechnology Cell Biology Cellular stress response Climate change Crop improvement Crop production Crop resilience Crops Data integration Ecosystem Environmental risk Food contamination Food contamination & poisoning Food security Food supply Gene Expression Profiling Genotypes Human influences Life Sciences Metabolites Metabolomics Metals Metals - toxicity Phenotypes Phenotyping Pipelines Plant Biochemistry Plant Sciences Plant species Plants (botany) Proteomics Review Software Soil Soil contamination Soil pollution Soil water Toxicity Transcriptomics Water pollution |
title | Transcriptomics, proteomics, and metabolomics interventions prompt crop improvement against metal(loid) toxicity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A14%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptomics,%20proteomics,%20and%20metabolomics%20interventions%20prompt%20crop%20improvement%20against%20metal(loid)%20toxicity&rft.jtitle=Plant%20cell%20reports&rft.au=Raza,%20Ali&rft.date=2024-03-01&rft.volume=43&rft.issue=3&rft.spage=80&rft.epage=80&rft.pages=80-80&rft.artnum=80&rft.issn=0721-7714&rft.eissn=1432-203X&rft_id=info:doi/10.1007/s00299-024-03153-7&rft_dat=%3Cproquest_pubme%3E2932481044%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-26465591413aa086cb07573053b53f34a4459b93f965cf110962c1dc0901553c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2932481044&rft_id=info:pmid/38411713&rfr_iscdi=true |