Loading…

Transcriptomics, proteomics, and metabolomics interventions prompt crop improvement against metal(loid) toxicity

The escalating challenges posed by metal(loid) toxicity in agricultural ecosystems, exacerbated by rapid climate change and anthropogenic pressures, demand urgent attention. Soil contamination is a critical issue because it significantly impacts crop productivity. The widespread threat of metal(loid...

Full description

Saved in:
Bibliographic Details
Published in:Plant cell reports 2024-03, Vol.43 (3), p.80-80, Article 80
Main Authors: Raza, Ali, Salehi, Hajar, Bashir, Shanza, Tabassum, Javaria, Jamla, Monica, Charagh, Sidra, Barmukh, Rutwik, Mir, Rakeeb Ahmad, Bhat, Basharat Ahmad, Javed, Muhammad Arshad, Guan, Dong-Xing, Mir, Reyazul Rouf, Siddique, Kadambot H. M., Varshney, Rajeev K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c475t-26465591413aa086cb07573053b53f34a4459b93f965cf110962c1dc0901553c3
cites cdi_FETCH-LOGICAL-c475t-26465591413aa086cb07573053b53f34a4459b93f965cf110962c1dc0901553c3
container_end_page 80
container_issue 3
container_start_page 80
container_title Plant cell reports
container_volume 43
creator Raza, Ali
Salehi, Hajar
Bashir, Shanza
Tabassum, Javaria
Jamla, Monica
Charagh, Sidra
Barmukh, Rutwik
Mir, Rakeeb Ahmad
Bhat, Basharat Ahmad
Javed, Muhammad Arshad
Guan, Dong-Xing
Mir, Reyazul Rouf
Siddique, Kadambot H. M.
Varshney, Rajeev K.
description The escalating challenges posed by metal(loid) toxicity in agricultural ecosystems, exacerbated by rapid climate change and anthropogenic pressures, demand urgent attention. Soil contamination is a critical issue because it significantly impacts crop productivity. The widespread threat of metal(loid) toxicity can jeopardize global food security due to contaminated food supplies and pose environmental risks, contributing to soil and water pollution and thus impacting the whole ecosystem. In this context, plants have evolved complex mechanisms to combat metal(loid) stress. Amid the array of innovative approaches, omics, notably transcriptomics, proteomics, and metabolomics, have emerged as transformative tools, shedding light on the genes, proteins, and key metabolites involved in metal(loid) stress responses and tolerance mechanisms. These identified candidates hold promise for developing high-yielding crops with desirable agronomic traits. Computational biology tools like bioinformatics, biological databases, and analytical pipelines support these omics approaches by harnessing diverse information and facilitating the mapping of genotype-to-phenotype relationships under stress conditions. This review explores: (1) the multifaceted strategies that plants use to adapt to metal(loid) toxicity in their environment; (2) the latest findings in metal(loid)-mediated transcriptomics, proteomics, and metabolomics studies across various plant species; (3) the integration of omics data with artificial intelligence and high-throughput phenotyping; (4) the latest bioinformatics databases, tools and pipelines for single and/or multi-omics data integration; (5) the latest insights into stress adaptations and tolerance mechanisms for future outlooks; and (6) the capacity of omics advances for creating sustainable and resilient crop plants that can thrive in metal(loid)-contaminated environments.
doi_str_mv 10.1007/s00299-024-03153-7
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10899315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932481044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-26465591413aa086cb07573053b53f34a4459b93f965cf110962c1dc0901553c3</originalsourceid><addsrcrecordid>eNp9kctu1DAUhq2qqJ0OvEAXKFI3RSJwfIvjFUIVBaRKbIrEznI8zuAqsVPbM6Jvj2cytNAFK1_-71x_hM4xvMMA4n0CIFLWQFgNFHNaiyO0wIySmgD9cYwWIAiuhcDsFJ2ldAdQRNGcoFPaMowFpgs03Ubtk4luymF0Jr2tphiyPdy1X1WjzboLw_6ncj7buLU-u-DTDh2nXJkYpsqN5bW1Y9EqvdbOp7wPHS6H4FZvqhx-OePyw0v0otdDsq8O5xJ9v_50e_Wlvvn2-evVx5vaMMFzTRrWcC4xw1RraBvTgeCCAqcdpz1lmjEuO0l72XDTYwyyIQavDEjAnFNDl-jDnHfadKNdmdJX1IOaoht1fFBBO_Wv4t1PtQ5bhaGVcrfOJbo8ZIjhfmNTVqNLxg6D9jZskiKSkrJPgLagF8_Qu7CJvsw3Uy0GxgpFZqosLKVo-8duMKido2p2VBVH1d5RJUrQ67_neAz5Y2EB6AykIvm1jU-1_5P2NyYfrYY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932481044</pqid></control><display><type>article</type><title>Transcriptomics, proteomics, and metabolomics interventions prompt crop improvement against metal(loid) toxicity</title><source>Springer Link</source><creator>Raza, Ali ; Salehi, Hajar ; Bashir, Shanza ; Tabassum, Javaria ; Jamla, Monica ; Charagh, Sidra ; Barmukh, Rutwik ; Mir, Rakeeb Ahmad ; Bhat, Basharat Ahmad ; Javed, Muhammad Arshad ; Guan, Dong-Xing ; Mir, Reyazul Rouf ; Siddique, Kadambot H. M. ; Varshney, Rajeev K.</creator><creatorcontrib>Raza, Ali ; Salehi, Hajar ; Bashir, Shanza ; Tabassum, Javaria ; Jamla, Monica ; Charagh, Sidra ; Barmukh, Rutwik ; Mir, Rakeeb Ahmad ; Bhat, Basharat Ahmad ; Javed, Muhammad Arshad ; Guan, Dong-Xing ; Mir, Reyazul Rouf ; Siddique, Kadambot H. M. ; Varshney, Rajeev K.</creatorcontrib><description>The escalating challenges posed by metal(loid) toxicity in agricultural ecosystems, exacerbated by rapid climate change and anthropogenic pressures, demand urgent attention. Soil contamination is a critical issue because it significantly impacts crop productivity. The widespread threat of metal(loid) toxicity can jeopardize global food security due to contaminated food supplies and pose environmental risks, contributing to soil and water pollution and thus impacting the whole ecosystem. In this context, plants have evolved complex mechanisms to combat metal(loid) stress. Amid the array of innovative approaches, omics, notably transcriptomics, proteomics, and metabolomics, have emerged as transformative tools, shedding light on the genes, proteins, and key metabolites involved in metal(loid) stress responses and tolerance mechanisms. These identified candidates hold promise for developing high-yielding crops with desirable agronomic traits. Computational biology tools like bioinformatics, biological databases, and analytical pipelines support these omics approaches by harnessing diverse information and facilitating the mapping of genotype-to-phenotype relationships under stress conditions. This review explores: (1) the multifaceted strategies that plants use to adapt to metal(loid) toxicity in their environment; (2) the latest findings in metal(loid)-mediated transcriptomics, proteomics, and metabolomics studies across various plant species; (3) the integration of omics data with artificial intelligence and high-throughput phenotyping; (4) the latest bioinformatics databases, tools and pipelines for single and/or multi-omics data integration; (5) the latest insights into stress adaptations and tolerance mechanisms for future outlooks; and (6) the capacity of omics advances for creating sustainable and resilient crop plants that can thrive in metal(loid)-contaminated environments.</description><identifier>ISSN: 0721-7714</identifier><identifier>EISSN: 1432-203X</identifier><identifier>DOI: 10.1007/s00299-024-03153-7</identifier><identifier>PMID: 38411713</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agricultural ecosystems ; Agronomic crops ; Anthropogenic factors ; Artificial Intelligence ; Bioinformatics ; Biomedical and Life Sciences ; Biotechnology ; Cell Biology ; Cellular stress response ; Climate change ; Crop improvement ; Crop production ; Crop resilience ; Crops ; Data integration ; Ecosystem ; Environmental risk ; Food contamination ; Food contamination &amp; poisoning ; Food security ; Food supply ; Gene Expression Profiling ; Genotypes ; Human influences ; Life Sciences ; Metabolites ; Metabolomics ; Metals ; Metals - toxicity ; Phenotypes ; Phenotyping ; Pipelines ; Plant Biochemistry ; Plant Sciences ; Plant species ; Plants (botany) ; Proteomics ; Review ; Software ; Soil ; Soil contamination ; Soil pollution ; Soil water ; Toxicity ; Transcriptomics ; Water pollution</subject><ispartof>Plant cell reports, 2024-03, Vol.43 (3), p.80-80, Article 80</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-26465591413aa086cb07573053b53f34a4459b93f965cf110962c1dc0901553c3</citedby><cites>FETCH-LOGICAL-c475t-26465591413aa086cb07573053b53f34a4459b93f965cf110962c1dc0901553c3</cites><orcidid>0000-0001-8578-9423 ; 0000-0002-8077-7324 ; 0000-0001-6097-4235 ; 0000-0002-9797-0681 ; 0000-0001-5745-8539 ; 0000-0002-3196-211X ; 0000-0002-2740-8992 ; 0000-0002-6275-9798 ; 0000-0002-7254-2349 ; 0000-0002-4562-9131 ; 0000-0002-5120-2791 ; 0000-0003-4709-9389</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38411713$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Raza, Ali</creatorcontrib><creatorcontrib>Salehi, Hajar</creatorcontrib><creatorcontrib>Bashir, Shanza</creatorcontrib><creatorcontrib>Tabassum, Javaria</creatorcontrib><creatorcontrib>Jamla, Monica</creatorcontrib><creatorcontrib>Charagh, Sidra</creatorcontrib><creatorcontrib>Barmukh, Rutwik</creatorcontrib><creatorcontrib>Mir, Rakeeb Ahmad</creatorcontrib><creatorcontrib>Bhat, Basharat Ahmad</creatorcontrib><creatorcontrib>Javed, Muhammad Arshad</creatorcontrib><creatorcontrib>Guan, Dong-Xing</creatorcontrib><creatorcontrib>Mir, Reyazul Rouf</creatorcontrib><creatorcontrib>Siddique, Kadambot H. M.</creatorcontrib><creatorcontrib>Varshney, Rajeev K.</creatorcontrib><title>Transcriptomics, proteomics, and metabolomics interventions prompt crop improvement against metal(loid) toxicity</title><title>Plant cell reports</title><addtitle>Plant Cell Rep</addtitle><addtitle>Plant Cell Rep</addtitle><description>The escalating challenges posed by metal(loid) toxicity in agricultural ecosystems, exacerbated by rapid climate change and anthropogenic pressures, demand urgent attention. Soil contamination is a critical issue because it significantly impacts crop productivity. The widespread threat of metal(loid) toxicity can jeopardize global food security due to contaminated food supplies and pose environmental risks, contributing to soil and water pollution and thus impacting the whole ecosystem. In this context, plants have evolved complex mechanisms to combat metal(loid) stress. Amid the array of innovative approaches, omics, notably transcriptomics, proteomics, and metabolomics, have emerged as transformative tools, shedding light on the genes, proteins, and key metabolites involved in metal(loid) stress responses and tolerance mechanisms. These identified candidates hold promise for developing high-yielding crops with desirable agronomic traits. Computational biology tools like bioinformatics, biological databases, and analytical pipelines support these omics approaches by harnessing diverse information and facilitating the mapping of genotype-to-phenotype relationships under stress conditions. This review explores: (1) the multifaceted strategies that plants use to adapt to metal(loid) toxicity in their environment; (2) the latest findings in metal(loid)-mediated transcriptomics, proteomics, and metabolomics studies across various plant species; (3) the integration of omics data with artificial intelligence and high-throughput phenotyping; (4) the latest bioinformatics databases, tools and pipelines for single and/or multi-omics data integration; (5) the latest insights into stress adaptations and tolerance mechanisms for future outlooks; and (6) the capacity of omics advances for creating sustainable and resilient crop plants that can thrive in metal(loid)-contaminated environments.</description><subject>Agricultural ecosystems</subject><subject>Agronomic crops</subject><subject>Anthropogenic factors</subject><subject>Artificial Intelligence</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cell Biology</subject><subject>Cellular stress response</subject><subject>Climate change</subject><subject>Crop improvement</subject><subject>Crop production</subject><subject>Crop resilience</subject><subject>Crops</subject><subject>Data integration</subject><subject>Ecosystem</subject><subject>Environmental risk</subject><subject>Food contamination</subject><subject>Food contamination &amp; poisoning</subject><subject>Food security</subject><subject>Food supply</subject><subject>Gene Expression Profiling</subject><subject>Genotypes</subject><subject>Human influences</subject><subject>Life Sciences</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>Metals</subject><subject>Metals - toxicity</subject><subject>Phenotypes</subject><subject>Phenotyping</subject><subject>Pipelines</subject><subject>Plant Biochemistry</subject><subject>Plant Sciences</subject><subject>Plant species</subject><subject>Plants (botany)</subject><subject>Proteomics</subject><subject>Review</subject><subject>Software</subject><subject>Soil</subject><subject>Soil contamination</subject><subject>Soil pollution</subject><subject>Soil water</subject><subject>Toxicity</subject><subject>Transcriptomics</subject><subject>Water pollution</subject><issn>0721-7714</issn><issn>1432-203X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kctu1DAUhq2qqJ0OvEAXKFI3RSJwfIvjFUIVBaRKbIrEznI8zuAqsVPbM6Jvj2cytNAFK1_-71x_hM4xvMMA4n0CIFLWQFgNFHNaiyO0wIySmgD9cYwWIAiuhcDsFJ2ldAdQRNGcoFPaMowFpgs03Ubtk4luymF0Jr2tphiyPdy1X1WjzboLw_6ncj7buLU-u-DTDh2nXJkYpsqN5bW1Y9EqvdbOp7wPHS6H4FZvqhx-OePyw0v0otdDsq8O5xJ9v_50e_Wlvvn2-evVx5vaMMFzTRrWcC4xw1RraBvTgeCCAqcdpz1lmjEuO0l72XDTYwyyIQavDEjAnFNDl-jDnHfadKNdmdJX1IOaoht1fFBBO_Wv4t1PtQ5bhaGVcrfOJbo8ZIjhfmNTVqNLxg6D9jZskiKSkrJPgLagF8_Qu7CJvsw3Uy0GxgpFZqosLKVo-8duMKido2p2VBVH1d5RJUrQ67_neAz5Y2EB6AykIvm1jU-1_5P2NyYfrYY</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Raza, Ali</creator><creator>Salehi, Hajar</creator><creator>Bashir, Shanza</creator><creator>Tabassum, Javaria</creator><creator>Jamla, Monica</creator><creator>Charagh, Sidra</creator><creator>Barmukh, Rutwik</creator><creator>Mir, Rakeeb Ahmad</creator><creator>Bhat, Basharat Ahmad</creator><creator>Javed, Muhammad Arshad</creator><creator>Guan, Dong-Xing</creator><creator>Mir, Reyazul Rouf</creator><creator>Siddique, Kadambot H. M.</creator><creator>Varshney, Rajeev K.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8578-9423</orcidid><orcidid>https://orcid.org/0000-0002-8077-7324</orcidid><orcidid>https://orcid.org/0000-0001-6097-4235</orcidid><orcidid>https://orcid.org/0000-0002-9797-0681</orcidid><orcidid>https://orcid.org/0000-0001-5745-8539</orcidid><orcidid>https://orcid.org/0000-0002-3196-211X</orcidid><orcidid>https://orcid.org/0000-0002-2740-8992</orcidid><orcidid>https://orcid.org/0000-0002-6275-9798</orcidid><orcidid>https://orcid.org/0000-0002-7254-2349</orcidid><orcidid>https://orcid.org/0000-0002-4562-9131</orcidid><orcidid>https://orcid.org/0000-0002-5120-2791</orcidid><orcidid>https://orcid.org/0000-0003-4709-9389</orcidid></search><sort><creationdate>20240301</creationdate><title>Transcriptomics, proteomics, and metabolomics interventions prompt crop improvement against metal(loid) toxicity</title><author>Raza, Ali ; Salehi, Hajar ; Bashir, Shanza ; Tabassum, Javaria ; Jamla, Monica ; Charagh, Sidra ; Barmukh, Rutwik ; Mir, Rakeeb Ahmad ; Bhat, Basharat Ahmad ; Javed, Muhammad Arshad ; Guan, Dong-Xing ; Mir, Reyazul Rouf ; Siddique, Kadambot H. M. ; Varshney, Rajeev K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-26465591413aa086cb07573053b53f34a4459b93f965cf110962c1dc0901553c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural ecosystems</topic><topic>Agronomic crops</topic><topic>Anthropogenic factors</topic><topic>Artificial Intelligence</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cell Biology</topic><topic>Cellular stress response</topic><topic>Climate change</topic><topic>Crop improvement</topic><topic>Crop production</topic><topic>Crop resilience</topic><topic>Crops</topic><topic>Data integration</topic><topic>Ecosystem</topic><topic>Environmental risk</topic><topic>Food contamination</topic><topic>Food contamination &amp; poisoning</topic><topic>Food security</topic><topic>Food supply</topic><topic>Gene Expression Profiling</topic><topic>Genotypes</topic><topic>Human influences</topic><topic>Life Sciences</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>Metals</topic><topic>Metals - toxicity</topic><topic>Phenotypes</topic><topic>Phenotyping</topic><topic>Pipelines</topic><topic>Plant Biochemistry</topic><topic>Plant Sciences</topic><topic>Plant species</topic><topic>Plants (botany)</topic><topic>Proteomics</topic><topic>Review</topic><topic>Software</topic><topic>Soil</topic><topic>Soil contamination</topic><topic>Soil pollution</topic><topic>Soil water</topic><topic>Toxicity</topic><topic>Transcriptomics</topic><topic>Water pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raza, Ali</creatorcontrib><creatorcontrib>Salehi, Hajar</creatorcontrib><creatorcontrib>Bashir, Shanza</creatorcontrib><creatorcontrib>Tabassum, Javaria</creatorcontrib><creatorcontrib>Jamla, Monica</creatorcontrib><creatorcontrib>Charagh, Sidra</creatorcontrib><creatorcontrib>Barmukh, Rutwik</creatorcontrib><creatorcontrib>Mir, Rakeeb Ahmad</creatorcontrib><creatorcontrib>Bhat, Basharat Ahmad</creatorcontrib><creatorcontrib>Javed, Muhammad Arshad</creatorcontrib><creatorcontrib>Guan, Dong-Xing</creatorcontrib><creatorcontrib>Mir, Reyazul Rouf</creatorcontrib><creatorcontrib>Siddique, Kadambot H. M.</creatorcontrib><creatorcontrib>Varshney, Rajeev K.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant cell reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raza, Ali</au><au>Salehi, Hajar</au><au>Bashir, Shanza</au><au>Tabassum, Javaria</au><au>Jamla, Monica</au><au>Charagh, Sidra</au><au>Barmukh, Rutwik</au><au>Mir, Rakeeb Ahmad</au><au>Bhat, Basharat Ahmad</au><au>Javed, Muhammad Arshad</au><au>Guan, Dong-Xing</au><au>Mir, Reyazul Rouf</au><au>Siddique, Kadambot H. M.</au><au>Varshney, Rajeev K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptomics, proteomics, and metabolomics interventions prompt crop improvement against metal(loid) toxicity</atitle><jtitle>Plant cell reports</jtitle><stitle>Plant Cell Rep</stitle><addtitle>Plant Cell Rep</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>43</volume><issue>3</issue><spage>80</spage><epage>80</epage><pages>80-80</pages><artnum>80</artnum><issn>0721-7714</issn><eissn>1432-203X</eissn><abstract>The escalating challenges posed by metal(loid) toxicity in agricultural ecosystems, exacerbated by rapid climate change and anthropogenic pressures, demand urgent attention. Soil contamination is a critical issue because it significantly impacts crop productivity. The widespread threat of metal(loid) toxicity can jeopardize global food security due to contaminated food supplies and pose environmental risks, contributing to soil and water pollution and thus impacting the whole ecosystem. In this context, plants have evolved complex mechanisms to combat metal(loid) stress. Amid the array of innovative approaches, omics, notably transcriptomics, proteomics, and metabolomics, have emerged as transformative tools, shedding light on the genes, proteins, and key metabolites involved in metal(loid) stress responses and tolerance mechanisms. These identified candidates hold promise for developing high-yielding crops with desirable agronomic traits. Computational biology tools like bioinformatics, biological databases, and analytical pipelines support these omics approaches by harnessing diverse information and facilitating the mapping of genotype-to-phenotype relationships under stress conditions. This review explores: (1) the multifaceted strategies that plants use to adapt to metal(loid) toxicity in their environment; (2) the latest findings in metal(loid)-mediated transcriptomics, proteomics, and metabolomics studies across various plant species; (3) the integration of omics data with artificial intelligence and high-throughput phenotyping; (4) the latest bioinformatics databases, tools and pipelines for single and/or multi-omics data integration; (5) the latest insights into stress adaptations and tolerance mechanisms for future outlooks; and (6) the capacity of omics advances for creating sustainable and resilient crop plants that can thrive in metal(loid)-contaminated environments.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38411713</pmid><doi>10.1007/s00299-024-03153-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8578-9423</orcidid><orcidid>https://orcid.org/0000-0002-8077-7324</orcidid><orcidid>https://orcid.org/0000-0001-6097-4235</orcidid><orcidid>https://orcid.org/0000-0002-9797-0681</orcidid><orcidid>https://orcid.org/0000-0001-5745-8539</orcidid><orcidid>https://orcid.org/0000-0002-3196-211X</orcidid><orcidid>https://orcid.org/0000-0002-2740-8992</orcidid><orcidid>https://orcid.org/0000-0002-6275-9798</orcidid><orcidid>https://orcid.org/0000-0002-7254-2349</orcidid><orcidid>https://orcid.org/0000-0002-4562-9131</orcidid><orcidid>https://orcid.org/0000-0002-5120-2791</orcidid><orcidid>https://orcid.org/0000-0003-4709-9389</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0721-7714
ispartof Plant cell reports, 2024-03, Vol.43 (3), p.80-80, Article 80
issn 0721-7714
1432-203X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10899315
source Springer Link
subjects Agricultural ecosystems
Agronomic crops
Anthropogenic factors
Artificial Intelligence
Bioinformatics
Biomedical and Life Sciences
Biotechnology
Cell Biology
Cellular stress response
Climate change
Crop improvement
Crop production
Crop resilience
Crops
Data integration
Ecosystem
Environmental risk
Food contamination
Food contamination & poisoning
Food security
Food supply
Gene Expression Profiling
Genotypes
Human influences
Life Sciences
Metabolites
Metabolomics
Metals
Metals - toxicity
Phenotypes
Phenotyping
Pipelines
Plant Biochemistry
Plant Sciences
Plant species
Plants (botany)
Proteomics
Review
Software
Soil
Soil contamination
Soil pollution
Soil water
Toxicity
Transcriptomics
Water pollution
title Transcriptomics, proteomics, and metabolomics interventions prompt crop improvement against metal(loid) toxicity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A14%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptomics,%20proteomics,%20and%20metabolomics%20interventions%20prompt%20crop%20improvement%20against%20metal(loid)%20toxicity&rft.jtitle=Plant%20cell%20reports&rft.au=Raza,%20Ali&rft.date=2024-03-01&rft.volume=43&rft.issue=3&rft.spage=80&rft.epage=80&rft.pages=80-80&rft.artnum=80&rft.issn=0721-7714&rft.eissn=1432-203X&rft_id=info:doi/10.1007/s00299-024-03153-7&rft_dat=%3Cproquest_pubme%3E2932481044%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-26465591413aa086cb07573053b53f34a4459b93f965cf110962c1dc0901553c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2932481044&rft_id=info:pmid/38411713&rfr_iscdi=true