Loading…
Thermo-Mechanical Characterization of Metal-Polymer Friction Stir Composite Joints-A Full Factorial Design of Experiments
With the increasing demand for lighter, more environmentally friendly, and affordable solutions in the mobility sector, designers and engineers are actively promoting the use of innovative integral dissimilar structures. In this field, friction stir-based technologies offer unique advantages compare...
Saved in:
Published in: | Polymers 2024-02, Vol.16 (5), p.602 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c455t-38af09c09eeec247a8b1be28afe7bb6b4380bc70c1a726d2101a1876b5bdf1d63 |
---|---|
cites | cdi_FETCH-LOGICAL-c455t-38af09c09eeec247a8b1be28afe7bb6b4380bc70c1a726d2101a1876b5bdf1d63 |
container_end_page | |
container_issue | 5 |
container_start_page | 602 |
container_title | Polymers |
container_volume | 16 |
creator | Correia, Arménio N Gaspar, Beatriz M Cipriano, Gonçalo Braga, Daniel F O Baptista, Ricardo Infante, Virgínia |
description | With the increasing demand for lighter, more environmentally friendly, and affordable solutions in the mobility sector, designers and engineers are actively promoting the use of innovative integral dissimilar structures. In this field, friction stir-based technologies offer unique advantages compared with conventional joining technologies, such as mechanical fastening and adhesive bonding, which recently demonstrated promising results. In this study, an aluminum alloy and a glass fiber-reinforced polymer were friction stir joined in an overlap configuration. To assess the main effects, interactions, and influence of processing parameters on the mechanical strength and processing temperature of the fabricated joints, a full factorial design study with three factors and two levels was carried out. The design of experiments resulted in statistical models with excellent fit to the experimental data, enabling a thorough understanding of the influence of rotational speed, travel speed, and tool tilt angle on dissimilar metal-to-polymer friction stir composite joints. The mechanical strength of the composite joints ranged from 1708.1 ± 45.5 N to 3414.2 ± 317.1, while the processing temperature was between 203.6 ± 10.7 °C and 251.5 ± 9.7. |
doi_str_mv | 10.3390/polym16050602 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10934455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A786438887</galeid><sourcerecordid>A786438887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-38af09c09eeec247a8b1be28afe7bb6b4380bc70c1a726d2101a1876b5bdf1d63</originalsourceid><addsrcrecordid>eNpdksFu1DAQhi0EotXSI1cUiQuXFDtObOeEVtsuULUqEuVsOc5k15UTBztBLE_PbLet2toHWzPf_DPjMSHvGT3lvKafx-B3PRO0ooIWr8hxQSXPSy7o6yf3I3KS0i3FVVZCMPmWHHFVyqpQ4pjsbrYQ-5Bfgd2awVnjs9XWRGMniO6fmVwYstBlVzAZn__Yp4OYraOzd56fk4vZKvRjSG6C7CK4YUr5MlvP3mdrFAnRoeIZJLe50zn_O6JuD4i9I2864xOc3J8L8mt9frP6ll9ef_2-Wl7mtqyqKefKdLS2tAYAW5TSqIY1UKAVZNOIpuSKNlZSy4wsRFswygxTUjRV03asFXxBvhx0x7npobWYOxqvRyzDxJ0OxunnnsFt9Sb80YzWvMQaUOHTvUIMv2dIk-5dsuC9GSDMSRc1vquqhKoR_fgCvQ1zHLC_PVUpqUocy4KcHqiN8aDd0AVMbHG30DsbBugc2pdSCexOqX1AfgiwMaQUoXssn1G9_wn62U9A_sPTnh_ph7nz_wuOsYI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2955878407</pqid></control><display><type>article</type><title>Thermo-Mechanical Characterization of Metal-Polymer Friction Stir Composite Joints-A Full Factorial Design of Experiments</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Correia, Arménio N ; Gaspar, Beatriz M ; Cipriano, Gonçalo ; Braga, Daniel F O ; Baptista, Ricardo ; Infante, Virgínia</creator><creatorcontrib>Correia, Arménio N ; Gaspar, Beatriz M ; Cipriano, Gonçalo ; Braga, Daniel F O ; Baptista, Ricardo ; Infante, Virgínia</creatorcontrib><description>With the increasing demand for lighter, more environmentally friendly, and affordable solutions in the mobility sector, designers and engineers are actively promoting the use of innovative integral dissimilar structures. In this field, friction stir-based technologies offer unique advantages compared with conventional joining technologies, such as mechanical fastening and adhesive bonding, which recently demonstrated promising results. In this study, an aluminum alloy and a glass fiber-reinforced polymer were friction stir joined in an overlap configuration. To assess the main effects, interactions, and influence of processing parameters on the mechanical strength and processing temperature of the fabricated joints, a full factorial design study with three factors and two levels was carried out. The design of experiments resulted in statistical models with excellent fit to the experimental data, enabling a thorough understanding of the influence of rotational speed, travel speed, and tool tilt angle on dissimilar metal-to-polymer friction stir composite joints. The mechanical strength of the composite joints ranged from 1708.1 ± 45.5 N to 3414.2 ± 317.1, while the processing temperature was between 203.6 ± 10.7 °C and 251.5 ± 9.7.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym16050602</identifier><identifier>PMID: 38475286</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adhesive bonding ; Alloys ; Aluminum alloys ; Aluminum base alloys ; Analysis ; Chemical bonds ; Design of experiments ; Dissimilar metals ; Emission standards ; Factorial design ; Factorial experiment designs ; Fiber reinforced polymers ; Fibrous composites ; Friction ; Friction stir welding ; Fuel cells ; Glass fiber reinforced plastics ; Glass fibers ; Heat resistance ; Identification and classification ; Impact strength ; Manufacturing ; Mechanical properties ; Metal fatigue ; Oxidation ; Polyethylene ; Polymers ; Process parameters ; Statistical models ; Thermal properties</subject><ispartof>Polymers, 2024-02, Vol.16 (5), p.602</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-38af09c09eeec247a8b1be28afe7bb6b4380bc70c1a726d2101a1876b5bdf1d63</citedby><cites>FETCH-LOGICAL-c455t-38af09c09eeec247a8b1be28afe7bb6b4380bc70c1a726d2101a1876b5bdf1d63</cites><orcidid>0000-0002-0587-3041 ; 0000-0001-8165-5946 ; 0000-0003-1356-8319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2955878407/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2955878407?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38475286$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Correia, Arménio N</creatorcontrib><creatorcontrib>Gaspar, Beatriz M</creatorcontrib><creatorcontrib>Cipriano, Gonçalo</creatorcontrib><creatorcontrib>Braga, Daniel F O</creatorcontrib><creatorcontrib>Baptista, Ricardo</creatorcontrib><creatorcontrib>Infante, Virgínia</creatorcontrib><title>Thermo-Mechanical Characterization of Metal-Polymer Friction Stir Composite Joints-A Full Factorial Design of Experiments</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>With the increasing demand for lighter, more environmentally friendly, and affordable solutions in the mobility sector, designers and engineers are actively promoting the use of innovative integral dissimilar structures. In this field, friction stir-based technologies offer unique advantages compared with conventional joining technologies, such as mechanical fastening and adhesive bonding, which recently demonstrated promising results. In this study, an aluminum alloy and a glass fiber-reinforced polymer were friction stir joined in an overlap configuration. To assess the main effects, interactions, and influence of processing parameters on the mechanical strength and processing temperature of the fabricated joints, a full factorial design study with three factors and two levels was carried out. The design of experiments resulted in statistical models with excellent fit to the experimental data, enabling a thorough understanding of the influence of rotational speed, travel speed, and tool tilt angle on dissimilar metal-to-polymer friction stir composite joints. The mechanical strength of the composite joints ranged from 1708.1 ± 45.5 N to 3414.2 ± 317.1, while the processing temperature was between 203.6 ± 10.7 °C and 251.5 ± 9.7.</description><subject>Adhesive bonding</subject><subject>Alloys</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Analysis</subject><subject>Chemical bonds</subject><subject>Design of experiments</subject><subject>Dissimilar metals</subject><subject>Emission standards</subject><subject>Factorial design</subject><subject>Factorial experiment designs</subject><subject>Fiber reinforced polymers</subject><subject>Fibrous composites</subject><subject>Friction</subject><subject>Friction stir welding</subject><subject>Fuel cells</subject><subject>Glass fiber reinforced plastics</subject><subject>Glass fibers</subject><subject>Heat resistance</subject><subject>Identification and classification</subject><subject>Impact strength</subject><subject>Manufacturing</subject><subject>Mechanical properties</subject><subject>Metal fatigue</subject><subject>Oxidation</subject><subject>Polyethylene</subject><subject>Polymers</subject><subject>Process parameters</subject><subject>Statistical models</subject><subject>Thermal properties</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdksFu1DAQhi0EotXSI1cUiQuXFDtObOeEVtsuULUqEuVsOc5k15UTBztBLE_PbLet2toHWzPf_DPjMSHvGT3lvKafx-B3PRO0ooIWr8hxQSXPSy7o6yf3I3KS0i3FVVZCMPmWHHFVyqpQ4pjsbrYQ-5Bfgd2awVnjs9XWRGMniO6fmVwYstBlVzAZn__Yp4OYraOzd56fk4vZKvRjSG6C7CK4YUr5MlvP3mdrFAnRoeIZJLe50zn_O6JuD4i9I2864xOc3J8L8mt9frP6ll9ef_2-Wl7mtqyqKefKdLS2tAYAW5TSqIY1UKAVZNOIpuSKNlZSy4wsRFswygxTUjRV03asFXxBvhx0x7npobWYOxqvRyzDxJ0OxunnnsFt9Sb80YzWvMQaUOHTvUIMv2dIk-5dsuC9GSDMSRc1vquqhKoR_fgCvQ1zHLC_PVUpqUocy4KcHqiN8aDd0AVMbHG30DsbBugc2pdSCexOqX1AfgiwMaQUoXssn1G9_wn62U9A_sPTnh_ph7nz_wuOsYI</recordid><startdate>20240222</startdate><enddate>20240222</enddate><creator>Correia, Arménio N</creator><creator>Gaspar, Beatriz M</creator><creator>Cipriano, Gonçalo</creator><creator>Braga, Daniel F O</creator><creator>Baptista, Ricardo</creator><creator>Infante, Virgínia</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0587-3041</orcidid><orcidid>https://orcid.org/0000-0001-8165-5946</orcidid><orcidid>https://orcid.org/0000-0003-1356-8319</orcidid></search><sort><creationdate>20240222</creationdate><title>Thermo-Mechanical Characterization of Metal-Polymer Friction Stir Composite Joints-A Full Factorial Design of Experiments</title><author>Correia, Arménio N ; Gaspar, Beatriz M ; Cipriano, Gonçalo ; Braga, Daniel F O ; Baptista, Ricardo ; Infante, Virgínia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-38af09c09eeec247a8b1be28afe7bb6b4380bc70c1a726d2101a1876b5bdf1d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adhesive bonding</topic><topic>Alloys</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Analysis</topic><topic>Chemical bonds</topic><topic>Design of experiments</topic><topic>Dissimilar metals</topic><topic>Emission standards</topic><topic>Factorial design</topic><topic>Factorial experiment designs</topic><topic>Fiber reinforced polymers</topic><topic>Fibrous composites</topic><topic>Friction</topic><topic>Friction stir welding</topic><topic>Fuel cells</topic><topic>Glass fiber reinforced plastics</topic><topic>Glass fibers</topic><topic>Heat resistance</topic><topic>Identification and classification</topic><topic>Impact strength</topic><topic>Manufacturing</topic><topic>Mechanical properties</topic><topic>Metal fatigue</topic><topic>Oxidation</topic><topic>Polyethylene</topic><topic>Polymers</topic><topic>Process parameters</topic><topic>Statistical models</topic><topic>Thermal properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Correia, Arménio N</creatorcontrib><creatorcontrib>Gaspar, Beatriz M</creatorcontrib><creatorcontrib>Cipriano, Gonçalo</creatorcontrib><creatorcontrib>Braga, Daniel F O</creatorcontrib><creatorcontrib>Baptista, Ricardo</creatorcontrib><creatorcontrib>Infante, Virgínia</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Correia, Arménio N</au><au>Gaspar, Beatriz M</au><au>Cipriano, Gonçalo</au><au>Braga, Daniel F O</au><au>Baptista, Ricardo</au><au>Infante, Virgínia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermo-Mechanical Characterization of Metal-Polymer Friction Stir Composite Joints-A Full Factorial Design of Experiments</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2024-02-22</date><risdate>2024</risdate><volume>16</volume><issue>5</issue><spage>602</spage><pages>602-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>With the increasing demand for lighter, more environmentally friendly, and affordable solutions in the mobility sector, designers and engineers are actively promoting the use of innovative integral dissimilar structures. In this field, friction stir-based technologies offer unique advantages compared with conventional joining technologies, such as mechanical fastening and adhesive bonding, which recently demonstrated promising results. In this study, an aluminum alloy and a glass fiber-reinforced polymer were friction stir joined in an overlap configuration. To assess the main effects, interactions, and influence of processing parameters on the mechanical strength and processing temperature of the fabricated joints, a full factorial design study with three factors and two levels was carried out. The design of experiments resulted in statistical models with excellent fit to the experimental data, enabling a thorough understanding of the influence of rotational speed, travel speed, and tool tilt angle on dissimilar metal-to-polymer friction stir composite joints. The mechanical strength of the composite joints ranged from 1708.1 ± 45.5 N to 3414.2 ± 317.1, while the processing temperature was between 203.6 ± 10.7 °C and 251.5 ± 9.7.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38475286</pmid><doi>10.3390/polym16050602</doi><orcidid>https://orcid.org/0000-0002-0587-3041</orcidid><orcidid>https://orcid.org/0000-0001-8165-5946</orcidid><orcidid>https://orcid.org/0000-0003-1356-8319</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2024-02, Vol.16 (5), p.602 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10934455 |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Adhesive bonding Alloys Aluminum alloys Aluminum base alloys Analysis Chemical bonds Design of experiments Dissimilar metals Emission standards Factorial design Factorial experiment designs Fiber reinforced polymers Fibrous composites Friction Friction stir welding Fuel cells Glass fiber reinforced plastics Glass fibers Heat resistance Identification and classification Impact strength Manufacturing Mechanical properties Metal fatigue Oxidation Polyethylene Polymers Process parameters Statistical models Thermal properties |
title | Thermo-Mechanical Characterization of Metal-Polymer Friction Stir Composite Joints-A Full Factorial Design of Experiments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A21%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermo-Mechanical%20Characterization%20of%20Metal-Polymer%20Friction%20Stir%20Composite%20Joints-A%20Full%20Factorial%20Design%20of%20Experiments&rft.jtitle=Polymers&rft.au=Correia,%20Arm%C3%A9nio%20N&rft.date=2024-02-22&rft.volume=16&rft.issue=5&rft.spage=602&rft.pages=602-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym16050602&rft_dat=%3Cgale_pubme%3EA786438887%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-38af09c09eeec247a8b1be28afe7bb6b4380bc70c1a726d2101a1876b5bdf1d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2955878407&rft_id=info:pmid/38475286&rft_galeid=A786438887&rfr_iscdi=true |