Loading…

Thermo-Mechanical Characterization of Metal-Polymer Friction Stir Composite Joints-A Full Factorial Design of Experiments

With the increasing demand for lighter, more environmentally friendly, and affordable solutions in the mobility sector, designers and engineers are actively promoting the use of innovative integral dissimilar structures. In this field, friction stir-based technologies offer unique advantages compare...

Full description

Saved in:
Bibliographic Details
Published in:Polymers 2024-02, Vol.16 (5), p.602
Main Authors: Correia, Arménio N, Gaspar, Beatriz M, Cipriano, Gonçalo, Braga, Daniel F O, Baptista, Ricardo, Infante, Virgínia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-38af09c09eeec247a8b1be28afe7bb6b4380bc70c1a726d2101a1876b5bdf1d63
cites cdi_FETCH-LOGICAL-c455t-38af09c09eeec247a8b1be28afe7bb6b4380bc70c1a726d2101a1876b5bdf1d63
container_end_page
container_issue 5
container_start_page 602
container_title Polymers
container_volume 16
creator Correia, Arménio N
Gaspar, Beatriz M
Cipriano, Gonçalo
Braga, Daniel F O
Baptista, Ricardo
Infante, Virgínia
description With the increasing demand for lighter, more environmentally friendly, and affordable solutions in the mobility sector, designers and engineers are actively promoting the use of innovative integral dissimilar structures. In this field, friction stir-based technologies offer unique advantages compared with conventional joining technologies, such as mechanical fastening and adhesive bonding, which recently demonstrated promising results. In this study, an aluminum alloy and a glass fiber-reinforced polymer were friction stir joined in an overlap configuration. To assess the main effects, interactions, and influence of processing parameters on the mechanical strength and processing temperature of the fabricated joints, a full factorial design study with three factors and two levels was carried out. The design of experiments resulted in statistical models with excellent fit to the experimental data, enabling a thorough understanding of the influence of rotational speed, travel speed, and tool tilt angle on dissimilar metal-to-polymer friction stir composite joints. The mechanical strength of the composite joints ranged from 1708.1 ± 45.5 N to 3414.2 ± 317.1, while the processing temperature was between 203.6 ± 10.7 °C and 251.5 ± 9.7.
doi_str_mv 10.3390/polym16050602
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10934455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A786438887</galeid><sourcerecordid>A786438887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-38af09c09eeec247a8b1be28afe7bb6b4380bc70c1a726d2101a1876b5bdf1d63</originalsourceid><addsrcrecordid>eNpdksFu1DAQhi0EotXSI1cUiQuXFDtObOeEVtsuULUqEuVsOc5k15UTBztBLE_PbLet2toHWzPf_DPjMSHvGT3lvKafx-B3PRO0ooIWr8hxQSXPSy7o6yf3I3KS0i3FVVZCMPmWHHFVyqpQ4pjsbrYQ-5Bfgd2awVnjs9XWRGMniO6fmVwYstBlVzAZn__Yp4OYraOzd56fk4vZKvRjSG6C7CK4YUr5MlvP3mdrFAnRoeIZJLe50zn_O6JuD4i9I2864xOc3J8L8mt9frP6ll9ef_2-Wl7mtqyqKefKdLS2tAYAW5TSqIY1UKAVZNOIpuSKNlZSy4wsRFswygxTUjRV03asFXxBvhx0x7npobWYOxqvRyzDxJ0OxunnnsFt9Sb80YzWvMQaUOHTvUIMv2dIk-5dsuC9GSDMSRc1vquqhKoR_fgCvQ1zHLC_PVUpqUocy4KcHqiN8aDd0AVMbHG30DsbBugc2pdSCexOqX1AfgiwMaQUoXssn1G9_wn62U9A_sPTnh_ph7nz_wuOsYI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2955878407</pqid></control><display><type>article</type><title>Thermo-Mechanical Characterization of Metal-Polymer Friction Stir Composite Joints-A Full Factorial Design of Experiments</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Correia, Arménio N ; Gaspar, Beatriz M ; Cipriano, Gonçalo ; Braga, Daniel F O ; Baptista, Ricardo ; Infante, Virgínia</creator><creatorcontrib>Correia, Arménio N ; Gaspar, Beatriz M ; Cipriano, Gonçalo ; Braga, Daniel F O ; Baptista, Ricardo ; Infante, Virgínia</creatorcontrib><description>With the increasing demand for lighter, more environmentally friendly, and affordable solutions in the mobility sector, designers and engineers are actively promoting the use of innovative integral dissimilar structures. In this field, friction stir-based technologies offer unique advantages compared with conventional joining technologies, such as mechanical fastening and adhesive bonding, which recently demonstrated promising results. In this study, an aluminum alloy and a glass fiber-reinforced polymer were friction stir joined in an overlap configuration. To assess the main effects, interactions, and influence of processing parameters on the mechanical strength and processing temperature of the fabricated joints, a full factorial design study with three factors and two levels was carried out. The design of experiments resulted in statistical models with excellent fit to the experimental data, enabling a thorough understanding of the influence of rotational speed, travel speed, and tool tilt angle on dissimilar metal-to-polymer friction stir composite joints. The mechanical strength of the composite joints ranged from 1708.1 ± 45.5 N to 3414.2 ± 317.1, while the processing temperature was between 203.6 ± 10.7 °C and 251.5 ± 9.7.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym16050602</identifier><identifier>PMID: 38475286</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adhesive bonding ; Alloys ; Aluminum alloys ; Aluminum base alloys ; Analysis ; Chemical bonds ; Design of experiments ; Dissimilar metals ; Emission standards ; Factorial design ; Factorial experiment designs ; Fiber reinforced polymers ; Fibrous composites ; Friction ; Friction stir welding ; Fuel cells ; Glass fiber reinforced plastics ; Glass fibers ; Heat resistance ; Identification and classification ; Impact strength ; Manufacturing ; Mechanical properties ; Metal fatigue ; Oxidation ; Polyethylene ; Polymers ; Process parameters ; Statistical models ; Thermal properties</subject><ispartof>Polymers, 2024-02, Vol.16 (5), p.602</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-38af09c09eeec247a8b1be28afe7bb6b4380bc70c1a726d2101a1876b5bdf1d63</citedby><cites>FETCH-LOGICAL-c455t-38af09c09eeec247a8b1be28afe7bb6b4380bc70c1a726d2101a1876b5bdf1d63</cites><orcidid>0000-0002-0587-3041 ; 0000-0001-8165-5946 ; 0000-0003-1356-8319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2955878407/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2955878407?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38475286$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Correia, Arménio N</creatorcontrib><creatorcontrib>Gaspar, Beatriz M</creatorcontrib><creatorcontrib>Cipriano, Gonçalo</creatorcontrib><creatorcontrib>Braga, Daniel F O</creatorcontrib><creatorcontrib>Baptista, Ricardo</creatorcontrib><creatorcontrib>Infante, Virgínia</creatorcontrib><title>Thermo-Mechanical Characterization of Metal-Polymer Friction Stir Composite Joints-A Full Factorial Design of Experiments</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>With the increasing demand for lighter, more environmentally friendly, and affordable solutions in the mobility sector, designers and engineers are actively promoting the use of innovative integral dissimilar structures. In this field, friction stir-based technologies offer unique advantages compared with conventional joining technologies, such as mechanical fastening and adhesive bonding, which recently demonstrated promising results. In this study, an aluminum alloy and a glass fiber-reinforced polymer were friction stir joined in an overlap configuration. To assess the main effects, interactions, and influence of processing parameters on the mechanical strength and processing temperature of the fabricated joints, a full factorial design study with three factors and two levels was carried out. The design of experiments resulted in statistical models with excellent fit to the experimental data, enabling a thorough understanding of the influence of rotational speed, travel speed, and tool tilt angle on dissimilar metal-to-polymer friction stir composite joints. The mechanical strength of the composite joints ranged from 1708.1 ± 45.5 N to 3414.2 ± 317.1, while the processing temperature was between 203.6 ± 10.7 °C and 251.5 ± 9.7.</description><subject>Adhesive bonding</subject><subject>Alloys</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Analysis</subject><subject>Chemical bonds</subject><subject>Design of experiments</subject><subject>Dissimilar metals</subject><subject>Emission standards</subject><subject>Factorial design</subject><subject>Factorial experiment designs</subject><subject>Fiber reinforced polymers</subject><subject>Fibrous composites</subject><subject>Friction</subject><subject>Friction stir welding</subject><subject>Fuel cells</subject><subject>Glass fiber reinforced plastics</subject><subject>Glass fibers</subject><subject>Heat resistance</subject><subject>Identification and classification</subject><subject>Impact strength</subject><subject>Manufacturing</subject><subject>Mechanical properties</subject><subject>Metal fatigue</subject><subject>Oxidation</subject><subject>Polyethylene</subject><subject>Polymers</subject><subject>Process parameters</subject><subject>Statistical models</subject><subject>Thermal properties</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdksFu1DAQhi0EotXSI1cUiQuXFDtObOeEVtsuULUqEuVsOc5k15UTBztBLE_PbLet2toHWzPf_DPjMSHvGT3lvKafx-B3PRO0ooIWr8hxQSXPSy7o6yf3I3KS0i3FVVZCMPmWHHFVyqpQ4pjsbrYQ-5Bfgd2awVnjs9XWRGMniO6fmVwYstBlVzAZn__Yp4OYraOzd56fk4vZKvRjSG6C7CK4YUr5MlvP3mdrFAnRoeIZJLe50zn_O6JuD4i9I2864xOc3J8L8mt9frP6ll9ef_2-Wl7mtqyqKefKdLS2tAYAW5TSqIY1UKAVZNOIpuSKNlZSy4wsRFswygxTUjRV03asFXxBvhx0x7npobWYOxqvRyzDxJ0OxunnnsFt9Sb80YzWvMQaUOHTvUIMv2dIk-5dsuC9GSDMSRc1vquqhKoR_fgCvQ1zHLC_PVUpqUocy4KcHqiN8aDd0AVMbHG30DsbBugc2pdSCexOqX1AfgiwMaQUoXssn1G9_wn62U9A_sPTnh_ph7nz_wuOsYI</recordid><startdate>20240222</startdate><enddate>20240222</enddate><creator>Correia, Arménio N</creator><creator>Gaspar, Beatriz M</creator><creator>Cipriano, Gonçalo</creator><creator>Braga, Daniel F O</creator><creator>Baptista, Ricardo</creator><creator>Infante, Virgínia</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0587-3041</orcidid><orcidid>https://orcid.org/0000-0001-8165-5946</orcidid><orcidid>https://orcid.org/0000-0003-1356-8319</orcidid></search><sort><creationdate>20240222</creationdate><title>Thermo-Mechanical Characterization of Metal-Polymer Friction Stir Composite Joints-A Full Factorial Design of Experiments</title><author>Correia, Arménio N ; Gaspar, Beatriz M ; Cipriano, Gonçalo ; Braga, Daniel F O ; Baptista, Ricardo ; Infante, Virgínia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-38af09c09eeec247a8b1be28afe7bb6b4380bc70c1a726d2101a1876b5bdf1d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adhesive bonding</topic><topic>Alloys</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Analysis</topic><topic>Chemical bonds</topic><topic>Design of experiments</topic><topic>Dissimilar metals</topic><topic>Emission standards</topic><topic>Factorial design</topic><topic>Factorial experiment designs</topic><topic>Fiber reinforced polymers</topic><topic>Fibrous composites</topic><topic>Friction</topic><topic>Friction stir welding</topic><topic>Fuel cells</topic><topic>Glass fiber reinforced plastics</topic><topic>Glass fibers</topic><topic>Heat resistance</topic><topic>Identification and classification</topic><topic>Impact strength</topic><topic>Manufacturing</topic><topic>Mechanical properties</topic><topic>Metal fatigue</topic><topic>Oxidation</topic><topic>Polyethylene</topic><topic>Polymers</topic><topic>Process parameters</topic><topic>Statistical models</topic><topic>Thermal properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Correia, Arménio N</creatorcontrib><creatorcontrib>Gaspar, Beatriz M</creatorcontrib><creatorcontrib>Cipriano, Gonçalo</creatorcontrib><creatorcontrib>Braga, Daniel F O</creatorcontrib><creatorcontrib>Baptista, Ricardo</creatorcontrib><creatorcontrib>Infante, Virgínia</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Correia, Arménio N</au><au>Gaspar, Beatriz M</au><au>Cipriano, Gonçalo</au><au>Braga, Daniel F O</au><au>Baptista, Ricardo</au><au>Infante, Virgínia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermo-Mechanical Characterization of Metal-Polymer Friction Stir Composite Joints-A Full Factorial Design of Experiments</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2024-02-22</date><risdate>2024</risdate><volume>16</volume><issue>5</issue><spage>602</spage><pages>602-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>With the increasing demand for lighter, more environmentally friendly, and affordable solutions in the mobility sector, designers and engineers are actively promoting the use of innovative integral dissimilar structures. In this field, friction stir-based technologies offer unique advantages compared with conventional joining technologies, such as mechanical fastening and adhesive bonding, which recently demonstrated promising results. In this study, an aluminum alloy and a glass fiber-reinforced polymer were friction stir joined in an overlap configuration. To assess the main effects, interactions, and influence of processing parameters on the mechanical strength and processing temperature of the fabricated joints, a full factorial design study with three factors and two levels was carried out. The design of experiments resulted in statistical models with excellent fit to the experimental data, enabling a thorough understanding of the influence of rotational speed, travel speed, and tool tilt angle on dissimilar metal-to-polymer friction stir composite joints. The mechanical strength of the composite joints ranged from 1708.1 ± 45.5 N to 3414.2 ± 317.1, while the processing temperature was between 203.6 ± 10.7 °C and 251.5 ± 9.7.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38475286</pmid><doi>10.3390/polym16050602</doi><orcidid>https://orcid.org/0000-0002-0587-3041</orcidid><orcidid>https://orcid.org/0000-0001-8165-5946</orcidid><orcidid>https://orcid.org/0000-0003-1356-8319</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2024-02, Vol.16 (5), p.602
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10934455
source Open Access: PubMed Central; Publicly Available Content Database
subjects Adhesive bonding
Alloys
Aluminum alloys
Aluminum base alloys
Analysis
Chemical bonds
Design of experiments
Dissimilar metals
Emission standards
Factorial design
Factorial experiment designs
Fiber reinforced polymers
Fibrous composites
Friction
Friction stir welding
Fuel cells
Glass fiber reinforced plastics
Glass fibers
Heat resistance
Identification and classification
Impact strength
Manufacturing
Mechanical properties
Metal fatigue
Oxidation
Polyethylene
Polymers
Process parameters
Statistical models
Thermal properties
title Thermo-Mechanical Characterization of Metal-Polymer Friction Stir Composite Joints-A Full Factorial Design of Experiments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A21%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermo-Mechanical%20Characterization%20of%20Metal-Polymer%20Friction%20Stir%20Composite%20Joints-A%20Full%20Factorial%20Design%20of%20Experiments&rft.jtitle=Polymers&rft.au=Correia,%20Arm%C3%A9nio%20N&rft.date=2024-02-22&rft.volume=16&rft.issue=5&rft.spage=602&rft.pages=602-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym16050602&rft_dat=%3Cgale_pubme%3EA786438887%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-38af09c09eeec247a8b1be28afe7bb6b4380bc70c1a726d2101a1876b5bdf1d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2955878407&rft_id=info:pmid/38475286&rft_galeid=A786438887&rfr_iscdi=true