Loading…
Super-resolution image display using diffractive decoders
High-resolution image projection over a large field of view (FOV) is hindered by the restricted space-bandwidth product (SBP) of wavefront modulators. We report a deep learning-enabled diffractive display based on a jointly trained pair of an electronic encoder and a diffractive decoder to synthesiz...
Saved in:
Published in: | Science advances 2022-12, Vol.8 (48), p.eadd3433-eadd3433 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c418t-e964548870a4b3c2a2cbb2a0b4f5a8ec029ad6d439773c24afdd99f827a09c743 |
---|---|
cites | cdi_FETCH-LOGICAL-c418t-e964548870a4b3c2a2cbb2a0b4f5a8ec029ad6d439773c24afdd99f827a09c743 |
container_end_page | eadd3433 |
container_issue | 48 |
container_start_page | eadd3433 |
container_title | Science advances |
container_volume | 8 |
creator | Işıl, Çağatay Mengu, Deniz Zhao, Yifan Tabassum, Anika Li, Jingxi Luo, Yi Jarrahi, Mona Ozcan, Aydogan |
description | High-resolution image projection over a large field of view (FOV) is hindered by the restricted space-bandwidth product (SBP) of wavefront modulators. We report a deep learning-enabled diffractive display based on a jointly trained pair of an electronic encoder and a diffractive decoder to synthesize/project super-resolved images using low-resolution wavefront modulators. The digital encoder rapidly preprocesses the high-resolution images so that their spatial information is encoded into low-resolution patterns, projected via a low SBP wavefront modulator. The diffractive decoder processes these low-resolution patterns using transmissive layers structured using deep learning to all-optically synthesize/project super-resolved images at its output FOV. This diffractive image display can achieve a super-resolution factor of ~4, increasing the SBP by ~16-fold. We experimentally validate its success using 3D-printed diffractive decoders that operate at the terahertz spectrum. This diffractive image decoder can be scaled to operate at visible wavelengths and used to design large SBP displays that are compact, low power, and computationally efficient. |
doi_str_mv | 10.1126/sciadv.add3433 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10936058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2746395742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-e964548870a4b3c2a2cbb2a0b4f5a8ec029ad6d439773c24afdd99f827a09c743</originalsourceid><addsrcrecordid>eNpVUU1LAzEQDaLYUnv1KMWTl635zuYkUvyCggf1HLJJto1sNzXZLfTfG9kq9TQzvDdvPh4AlwjOEcL8Nhmv7W6urSWUkBMwxkSwAjNanh7lIzBN6RNCiCjnDMlzMCKcMskYGwP51m9dLKJLoek7H9qZ3-iVm1mfto3ez_rk21Wu6jpq0_ldRpwJ1sV0Ac5q3SQ3PcQJ-Hh8eF88F8vXp5fF_bIwFJVd4WSeRctSQE0rYrDGpqqwhhWtmS6dgVhqyy0lUogMU11bK2VdYqGhNIKSCbgbdLd9tXHWuLaLulHbmBeNexW0V_-R1q_VKuwUgpJwyMqscD0ohNR5lZ_WObM2oW2d6RSSkFDMM-nmMCaGr96lTm18Mq5pdOtCnxQWlBPJBMWZOh-oJoaUoqv_lkFQ_RijBmPUwZjccHV8wh_91wbyDdWbjAs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2746395742</pqid></control><display><type>article</type><title>Super-resolution image display using diffractive decoders</title><source>American Association for the Advancement of Science</source><source>PubMed Central(OA)</source><creator>Işıl, Çağatay ; Mengu, Deniz ; Zhao, Yifan ; Tabassum, Anika ; Li, Jingxi ; Luo, Yi ; Jarrahi, Mona ; Ozcan, Aydogan</creator><creatorcontrib>Işıl, Çağatay ; Mengu, Deniz ; Zhao, Yifan ; Tabassum, Anika ; Li, Jingxi ; Luo, Yi ; Jarrahi, Mona ; Ozcan, Aydogan ; Univ. of California, Los Angeles, CA (United States)</creatorcontrib><description>High-resolution image projection over a large field of view (FOV) is hindered by the restricted space-bandwidth product (SBP) of wavefront modulators. We report a deep learning-enabled diffractive display based on a jointly trained pair of an electronic encoder and a diffractive decoder to synthesize/project super-resolved images using low-resolution wavefront modulators. The digital encoder rapidly preprocesses the high-resolution images so that their spatial information is encoded into low-resolution patterns, projected via a low SBP wavefront modulator. The diffractive decoder processes these low-resolution patterns using transmissive layers structured using deep learning to all-optically synthesize/project super-resolved images at its output FOV. This diffractive image display can achieve a super-resolution factor of ~4, increasing the SBP by ~16-fold. We experimentally validate its success using 3D-printed diffractive decoders that operate at the terahertz spectrum. This diffractive image decoder can be scaled to operate at visible wavelengths and used to design large SBP displays that are compact, low power, and computationally efficient.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.add3433</identifier><identifier>PMID: 36459555</identifier><language>eng</language><publisher>United States: AAAS</publisher><subject>Applied Sciences and Engineering ; ENGINEERING ; MATERIALS SCIENCE ; Physical and Materials Sciences ; SciAdv r-articles</subject><ispartof>Science advances, 2022-12, Vol.8 (48), p.eadd3433-eadd3433</ispartof><rights>Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-e964548870a4b3c2a2cbb2a0b4f5a8ec029ad6d439773c24afdd99f827a09c743</citedby><cites>FETCH-LOGICAL-c418t-e964548870a4b3c2a2cbb2a0b4f5a8ec029ad6d439773c24afdd99f827a09c743</cites><orcidid>0000-0001-9442-547X ; 0000-0003-3367-1858 ; 0000-0002-8812-6112 ; 0000-0002-0717-683X ; 0000-0001-6595-8680 ; 0000-0001-9514-555X ; 0000-0003-1051-1501 ; 0000000288126112 ; 0000000333671858 ; 000000019514555X ; 000000019442547X ; 000000020717683X ; 0000000310511501 ; 0000000165958680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936058/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936058/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,2884,2885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36459555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1903426$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Işıl, Çağatay</creatorcontrib><creatorcontrib>Mengu, Deniz</creatorcontrib><creatorcontrib>Zhao, Yifan</creatorcontrib><creatorcontrib>Tabassum, Anika</creatorcontrib><creatorcontrib>Li, Jingxi</creatorcontrib><creatorcontrib>Luo, Yi</creatorcontrib><creatorcontrib>Jarrahi, Mona</creatorcontrib><creatorcontrib>Ozcan, Aydogan</creatorcontrib><creatorcontrib>Univ. of California, Los Angeles, CA (United States)</creatorcontrib><title>Super-resolution image display using diffractive decoders</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>High-resolution image projection over a large field of view (FOV) is hindered by the restricted space-bandwidth product (SBP) of wavefront modulators. We report a deep learning-enabled diffractive display based on a jointly trained pair of an electronic encoder and a diffractive decoder to synthesize/project super-resolved images using low-resolution wavefront modulators. The digital encoder rapidly preprocesses the high-resolution images so that their spatial information is encoded into low-resolution patterns, projected via a low SBP wavefront modulator. The diffractive decoder processes these low-resolution patterns using transmissive layers structured using deep learning to all-optically synthesize/project super-resolved images at its output FOV. This diffractive image display can achieve a super-resolution factor of ~4, increasing the SBP by ~16-fold. We experimentally validate its success using 3D-printed diffractive decoders that operate at the terahertz spectrum. This diffractive image decoder can be scaled to operate at visible wavelengths and used to design large SBP displays that are compact, low power, and computationally efficient.</description><subject>Applied Sciences and Engineering</subject><subject>ENGINEERING</subject><subject>MATERIALS SCIENCE</subject><subject>Physical and Materials Sciences</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVUU1LAzEQDaLYUnv1KMWTl635zuYkUvyCggf1HLJJto1sNzXZLfTfG9kq9TQzvDdvPh4AlwjOEcL8Nhmv7W6urSWUkBMwxkSwAjNanh7lIzBN6RNCiCjnDMlzMCKcMskYGwP51m9dLKJLoek7H9qZ3-iVm1mfto3ez_rk21Wu6jpq0_ldRpwJ1sV0Ac5q3SQ3PcQJ-Hh8eF88F8vXp5fF_bIwFJVd4WSeRctSQE0rYrDGpqqwhhWtmS6dgVhqyy0lUogMU11bK2VdYqGhNIKSCbgbdLd9tXHWuLaLulHbmBeNexW0V_-R1q_VKuwUgpJwyMqscD0ohNR5lZ_WObM2oW2d6RSSkFDMM-nmMCaGr96lTm18Mq5pdOtCnxQWlBPJBMWZOh-oJoaUoqv_lkFQ_RijBmPUwZjccHV8wh_91wbyDdWbjAs</recordid><startdate>20221202</startdate><enddate>20221202</enddate><creator>Işıl, Çağatay</creator><creator>Mengu, Deniz</creator><creator>Zhao, Yifan</creator><creator>Tabassum, Anika</creator><creator>Li, Jingxi</creator><creator>Luo, Yi</creator><creator>Jarrahi, Mona</creator><creator>Ozcan, Aydogan</creator><general>AAAS</general><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9442-547X</orcidid><orcidid>https://orcid.org/0000-0003-3367-1858</orcidid><orcidid>https://orcid.org/0000-0002-8812-6112</orcidid><orcidid>https://orcid.org/0000-0002-0717-683X</orcidid><orcidid>https://orcid.org/0000-0001-6595-8680</orcidid><orcidid>https://orcid.org/0000-0001-9514-555X</orcidid><orcidid>https://orcid.org/0000-0003-1051-1501</orcidid><orcidid>https://orcid.org/0000000288126112</orcidid><orcidid>https://orcid.org/0000000333671858</orcidid><orcidid>https://orcid.org/000000019514555X</orcidid><orcidid>https://orcid.org/000000019442547X</orcidid><orcidid>https://orcid.org/000000020717683X</orcidid><orcidid>https://orcid.org/0000000310511501</orcidid><orcidid>https://orcid.org/0000000165958680</orcidid></search><sort><creationdate>20221202</creationdate><title>Super-resolution image display using diffractive decoders</title><author>Işıl, Çağatay ; Mengu, Deniz ; Zhao, Yifan ; Tabassum, Anika ; Li, Jingxi ; Luo, Yi ; Jarrahi, Mona ; Ozcan, Aydogan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-e964548870a4b3c2a2cbb2a0b4f5a8ec029ad6d439773c24afdd99f827a09c743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied Sciences and Engineering</topic><topic>ENGINEERING</topic><topic>MATERIALS SCIENCE</topic><topic>Physical and Materials Sciences</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Işıl, Çağatay</creatorcontrib><creatorcontrib>Mengu, Deniz</creatorcontrib><creatorcontrib>Zhao, Yifan</creatorcontrib><creatorcontrib>Tabassum, Anika</creatorcontrib><creatorcontrib>Li, Jingxi</creatorcontrib><creatorcontrib>Luo, Yi</creatorcontrib><creatorcontrib>Jarrahi, Mona</creatorcontrib><creatorcontrib>Ozcan, Aydogan</creatorcontrib><creatorcontrib>Univ. of California, Los Angeles, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Işıl, Çağatay</au><au>Mengu, Deniz</au><au>Zhao, Yifan</au><au>Tabassum, Anika</au><au>Li, Jingxi</au><au>Luo, Yi</au><au>Jarrahi, Mona</au><au>Ozcan, Aydogan</au><aucorp>Univ. of California, Los Angeles, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Super-resolution image display using diffractive decoders</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2022-12-02</date><risdate>2022</risdate><volume>8</volume><issue>48</issue><spage>eadd3433</spage><epage>eadd3433</epage><pages>eadd3433-eadd3433</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>High-resolution image projection over a large field of view (FOV) is hindered by the restricted space-bandwidth product (SBP) of wavefront modulators. We report a deep learning-enabled diffractive display based on a jointly trained pair of an electronic encoder and a diffractive decoder to synthesize/project super-resolved images using low-resolution wavefront modulators. The digital encoder rapidly preprocesses the high-resolution images so that their spatial information is encoded into low-resolution patterns, projected via a low SBP wavefront modulator. The diffractive decoder processes these low-resolution patterns using transmissive layers structured using deep learning to all-optically synthesize/project super-resolved images at its output FOV. This diffractive image display can achieve a super-resolution factor of ~4, increasing the SBP by ~16-fold. We experimentally validate its success using 3D-printed diffractive decoders that operate at the terahertz spectrum. This diffractive image decoder can be scaled to operate at visible wavelengths and used to design large SBP displays that are compact, low power, and computationally efficient.</abstract><cop>United States</cop><pub>AAAS</pub><pmid>36459555</pmid><doi>10.1126/sciadv.add3433</doi><orcidid>https://orcid.org/0000-0001-9442-547X</orcidid><orcidid>https://orcid.org/0000-0003-3367-1858</orcidid><orcidid>https://orcid.org/0000-0002-8812-6112</orcidid><orcidid>https://orcid.org/0000-0002-0717-683X</orcidid><orcidid>https://orcid.org/0000-0001-6595-8680</orcidid><orcidid>https://orcid.org/0000-0001-9514-555X</orcidid><orcidid>https://orcid.org/0000-0003-1051-1501</orcidid><orcidid>https://orcid.org/0000000288126112</orcidid><orcidid>https://orcid.org/0000000333671858</orcidid><orcidid>https://orcid.org/000000019514555X</orcidid><orcidid>https://orcid.org/000000019442547X</orcidid><orcidid>https://orcid.org/000000020717683X</orcidid><orcidid>https://orcid.org/0000000310511501</orcidid><orcidid>https://orcid.org/0000000165958680</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2022-12, Vol.8 (48), p.eadd3433-eadd3433 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10936058 |
source | American Association for the Advancement of Science; PubMed Central(OA) |
subjects | Applied Sciences and Engineering ENGINEERING MATERIALS SCIENCE Physical and Materials Sciences SciAdv r-articles |
title | Super-resolution image display using diffractive decoders |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A50%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Super-resolution%20image%20display%20using%20diffractive%20decoders&rft.jtitle=Science%20advances&rft.au=I%C5%9F%C4%B1l,%20%C3%87a%C4%9Fatay&rft.aucorp=Univ.%20of%20California,%20Los%20Angeles,%20CA%20(United%20States)&rft.date=2022-12-02&rft.volume=8&rft.issue=48&rft.spage=eadd3433&rft.epage=eadd3433&rft.pages=eadd3433-eadd3433&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.add3433&rft_dat=%3Cproquest_pubme%3E2746395742%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-e964548870a4b3c2a2cbb2a0b4f5a8ec029ad6d439773c24afdd99f827a09c743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2746395742&rft_id=info:pmid/36459555&rfr_iscdi=true |