Loading…

YAP1 controls the N-cadherin-mediated tumor-stroma interaction in melanoma progression

The hallmark of epithelial-to-mesenchymal transition (EMT) is the switch from epithelial cadherin (E-cadherin) to neural cadherin (N-cadherin), allowing melanoma cells to form a homotypic N-cadherin-mediated adhesion with stromal fibroblasts. However, how cadherin switching is initiated, maintained,...

Full description

Saved in:
Bibliographic Details
Published in:Oncogene 2024-03, Vol.43 (12), p.884-898
Main Authors: Xiao, Yao, Zhou, Linli, Andl, Thomas, Zhang, Yuhang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The hallmark of epithelial-to-mesenchymal transition (EMT) is the switch from epithelial cadherin (E-cadherin) to neural cadherin (N-cadherin), allowing melanoma cells to form a homotypic N-cadherin-mediated adhesion with stromal fibroblasts. However, how cadherin switching is initiated, maintained, and regulated in melanoma remains elusive. Here, we report a novel mechanism underlying cadherin switching in melanoma cells that is regulated by stromal Yes-associated protein 1 (YAP1) signaling. The progression of a BRAF-mutant mouse melanoma was suppressed in vivo upon YAP1 ablation in cancer-associated fibroblasts (CAFs). On the contrary, overexpressing YAP1 in CAFs accelerated melanoma development. By RNA-Seq, N-cadherin was identified as a major downstream effector of YAP1 signaling in CAFs. YAP1 silencing reduced N-cadherin expression in CAFs, leading to the downregulation of N-cadherin in neighboring melanoma cells. N-cadherin ablation inhibited the PI3K-AKT signaling pathway in melanoma cells and melanoma cell proliferation. The findings suggest that YAP1 depletion in CAFs induces the downregulation of p-AKT signaling in melanoma cells through the N-cadherin-mediated interaction between melanoma cells and CAFs. The data underscore an important role of CAFs in regulating N-cadherin-mediated adhesion and signaling in melanoma and highlight that disentangling cadherin-mediated cell-cell interactions can potentially disrupt tumor-stroma interactions and reverse the tumor cell invasive phenotype.
ISSN:0950-9232
1476-5594
1476-5594
DOI:10.1038/s41388-024-02953-1