Loading…

A lower bound for set‐coloring Ramsey numbers

The set‐coloring Ramsey number Rr,s(k)$$ {R}_{r,s}(k) $$ is defined to be the minimum n$$ n $$ such that if each edge of the complete graph Kn$$ {K}_n $$ is assigned a set of s$$ s $$ colors from {1,…,r}$$ \left\{1,\dots, r\right\} $$, then one of the colors contains a monochromatic clique of size k...

Full description

Saved in:
Bibliographic Details
Published in:Random structures & algorithms 2024-03, Vol.64 (2), p.157-169
Main Authors: Aragão, Lucas, Collares, Maurício, Marciano, João Pedro, Martins, Taísa, Morris, Robert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4443-85746a4a0fdd30aed4ca555ab7c8911c36a4001add5a6f30f1566ef496d3379a3
cites cdi_FETCH-LOGICAL-c4443-85746a4a0fdd30aed4ca555ab7c8911c36a4001add5a6f30f1566ef496d3379a3
container_end_page 169
container_issue 2
container_start_page 157
container_title Random structures & algorithms
container_volume 64
creator Aragão, Lucas
Collares, Maurício
Marciano, João Pedro
Martins, Taísa
Morris, Robert
description The set‐coloring Ramsey number Rr,s(k)$$ {R}_{r,s}(k) $$ is defined to be the minimum n$$ n $$ such that if each edge of the complete graph Kn$$ {K}_n $$ is assigned a set of s$$ s $$ colors from {1,…,r}$$ \left\{1,\dots, r\right\} $$, then one of the colors contains a monochromatic clique of size k$$ k $$. The case s=1$$ s=1 $$ is the usual r$$ r $$‐color Ramsey number, and the case s=r−1$$ s=r-1 $$ was studied by Erdős, Hajnal and Rado in 1965, and by Erdős and Szemerédi in 1972. The first significant results for general s$$ s $$ were obtained only recently, by Conlon, Fox, He, Mubayi, Suk and Verstraëte, who showed that Rr,s(k)=2Θ(kr)$$ {R}_{r,s}(k)={2}^{\Theta (kr)} $$ if s/r$$ s/r $$ is bounded away from 0 and 1. In the range s=r−o(r)$$ s=r-o(r) $$, however, their upper and lower bounds diverge significantly. In this note we introduce a new (random) coloring, and use it to determine Rr,s(k)$$ {R}_{r,s}(k) $$ up to polylogarithmic factors in the exponent for essentially all r$$ r $$, s$$ s $$, and k$$ k $$.
doi_str_mv 10.1002/rsa.21173
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10952192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918136766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4443-85746a4a0fdd30aed4ca555ab7c8911c36a4001add5a6f30f1566ef496d3379a3</originalsourceid><addsrcrecordid>eNp1kctKAzEUhoMotlYXvoAMuNHFtLlnZiWleIOC4GUd0kymTpmZ1KRj6c5H8Bl9ElOnFhVcJXA-Pv5zfgCOEewjCPHAedXHCAmyA7oIpkmMKUp213-K4zQhuAMOvJ9BCAXBZB90SMIQZxx1wWAYlXZpXDSxTZ1FuXWRN4uPt3dtS-uKehrdq8qbVVQ31cQ4fwj2clV6c7R5e-Dp6vJxdBOP765vR8NxrCmlJE6YoFxRBfMsI1CZjGrFGFMToZMUIU3CEEKksowpnhOYI8a5yWnKM0JEqkgPXLTeeTOpTKZNvXCqlHNXVMqtpFWF_D2pi2c5ta8y7M8wSnEwnG0Mzr40xi9kVXhtylLVxjZe4lSECFQkPKCnf9CZbVwd9gsUShDhgq-p85bSznrvTL5Ng6Bc9yBDD_Krh8Ce_Iy_Jb8PH4BBCyyL0qz-N8n7h2Gr_AQr-JGz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918136766</pqid></control><display><type>article</type><title>A lower bound for set‐coloring Ramsey numbers</title><source>Wiley</source><creator>Aragão, Lucas ; Collares, Maurício ; Marciano, João Pedro ; Martins, Taísa ; Morris, Robert</creator><creatorcontrib>Aragão, Lucas ; Collares, Maurício ; Marciano, João Pedro ; Martins, Taísa ; Morris, Robert</creatorcontrib><description>The set‐coloring Ramsey number Rr,s(k)$$ {R}_{r,s}(k) $$ is defined to be the minimum n$$ n $$ such that if each edge of the complete graph Kn$$ {K}_n $$ is assigned a set of s$$ s $$ colors from {1,…,r}$$ \left\{1,\dots, r\right\} $$, then one of the colors contains a monochromatic clique of size k$$ k $$. The case s=1$$ s=1 $$ is the usual r$$ r $$‐color Ramsey number, and the case s=r−1$$ s=r-1 $$ was studied by Erdős, Hajnal and Rado in 1965, and by Erdős and Szemerédi in 1972. The first significant results for general s$$ s $$ were obtained only recently, by Conlon, Fox, He, Mubayi, Suk and Verstraëte, who showed that Rr,s(k)=2Θ(kr)$$ {R}_{r,s}(k)={2}^{\Theta (kr)} $$ if s/r$$ s/r $$ is bounded away from 0 and 1. In the range s=r−o(r)$$ s=r-o(r) $$, however, their upper and lower bounds diverge significantly. In this note we introduce a new (random) coloring, and use it to determine Rr,s(k)$$ {R}_{r,s}(k) $$ up to polylogarithmic factors in the exponent for essentially all r$$ r $$, s$$ s $$, and k$$ k $$.</description><identifier>ISSN: 1042-9832</identifier><identifier>EISSN: 1098-2418</identifier><identifier>DOI: 10.1002/rsa.21173</identifier><identifier>PMID: 38516561</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>Coloring ; Lower bounds ; probabilistic method ; Ramsey theory ; random graphs</subject><ispartof>Random structures &amp; algorithms, 2024-03, Vol.64 (2), p.157-169</ispartof><rights>2023 The Authors. Random Structures &amp; Algorithms published by Wiley Periodicals LLC.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4443-85746a4a0fdd30aed4ca555ab7c8911c36a4001add5a6f30f1566ef496d3379a3</citedby><cites>FETCH-LOGICAL-c4443-85746a4a0fdd30aed4ca555ab7c8911c36a4001add5a6f30f1566ef496d3379a3</cites><orcidid>0009-0004-7292-463X ; 0000-0002-7826-7907</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38516561$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aragão, Lucas</creatorcontrib><creatorcontrib>Collares, Maurício</creatorcontrib><creatorcontrib>Marciano, João Pedro</creatorcontrib><creatorcontrib>Martins, Taísa</creatorcontrib><creatorcontrib>Morris, Robert</creatorcontrib><title>A lower bound for set‐coloring Ramsey numbers</title><title>Random structures &amp; algorithms</title><addtitle>Random Struct Algorithms</addtitle><description>The set‐coloring Ramsey number Rr,s(k)$$ {R}_{r,s}(k) $$ is defined to be the minimum n$$ n $$ such that if each edge of the complete graph Kn$$ {K}_n $$ is assigned a set of s$$ s $$ colors from {1,…,r}$$ \left\{1,\dots, r\right\} $$, then one of the colors contains a monochromatic clique of size k$$ k $$. The case s=1$$ s=1 $$ is the usual r$$ r $$‐color Ramsey number, and the case s=r−1$$ s=r-1 $$ was studied by Erdős, Hajnal and Rado in 1965, and by Erdős and Szemerédi in 1972. The first significant results for general s$$ s $$ were obtained only recently, by Conlon, Fox, He, Mubayi, Suk and Verstraëte, who showed that Rr,s(k)=2Θ(kr)$$ {R}_{r,s}(k)={2}^{\Theta (kr)} $$ if s/r$$ s/r $$ is bounded away from 0 and 1. In the range s=r−o(r)$$ s=r-o(r) $$, however, their upper and lower bounds diverge significantly. In this note we introduce a new (random) coloring, and use it to determine Rr,s(k)$$ {R}_{r,s}(k) $$ up to polylogarithmic factors in the exponent for essentially all r$$ r $$, s$$ s $$, and k$$ k $$.</description><subject>Coloring</subject><subject>Lower bounds</subject><subject>probabilistic method</subject><subject>Ramsey theory</subject><subject>random graphs</subject><issn>1042-9832</issn><issn>1098-2418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kctKAzEUhoMotlYXvoAMuNHFtLlnZiWleIOC4GUd0kymTpmZ1KRj6c5H8Bl9ElOnFhVcJXA-Pv5zfgCOEewjCPHAedXHCAmyA7oIpkmMKUp213-K4zQhuAMOvJ9BCAXBZB90SMIQZxx1wWAYlXZpXDSxTZ1FuXWRN4uPt3dtS-uKehrdq8qbVVQ31cQ4fwj2clV6c7R5e-Dp6vJxdBOP765vR8NxrCmlJE6YoFxRBfMsI1CZjGrFGFMToZMUIU3CEEKksowpnhOYI8a5yWnKM0JEqkgPXLTeeTOpTKZNvXCqlHNXVMqtpFWF_D2pi2c5ta8y7M8wSnEwnG0Mzr40xi9kVXhtylLVxjZe4lSECFQkPKCnf9CZbVwd9gsUShDhgq-p85bSznrvTL5Ng6Bc9yBDD_Krh8Ce_Iy_Jb8PH4BBCyyL0qz-N8n7h2Gr_AQr-JGz</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Aragão, Lucas</creator><creator>Collares, Maurício</creator><creator>Marciano, João Pedro</creator><creator>Martins, Taísa</creator><creator>Morris, Robert</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0004-7292-463X</orcidid><orcidid>https://orcid.org/0000-0002-7826-7907</orcidid></search><sort><creationdate>202403</creationdate><title>A lower bound for set‐coloring Ramsey numbers</title><author>Aragão, Lucas ; Collares, Maurício ; Marciano, João Pedro ; Martins, Taísa ; Morris, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4443-85746a4a0fdd30aed4ca555ab7c8911c36a4001add5a6f30f1566ef496d3379a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coloring</topic><topic>Lower bounds</topic><topic>probabilistic method</topic><topic>Ramsey theory</topic><topic>random graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aragão, Lucas</creatorcontrib><creatorcontrib>Collares, Maurício</creatorcontrib><creatorcontrib>Marciano, João Pedro</creatorcontrib><creatorcontrib>Martins, Taísa</creatorcontrib><creatorcontrib>Morris, Robert</creatorcontrib><collection>Wiley Online Library</collection><collection>Wiley Online Library website</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Random structures &amp; algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aragão, Lucas</au><au>Collares, Maurício</au><au>Marciano, João Pedro</au><au>Martins, Taísa</au><au>Morris, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A lower bound for set‐coloring Ramsey numbers</atitle><jtitle>Random structures &amp; algorithms</jtitle><addtitle>Random Struct Algorithms</addtitle><date>2024-03</date><risdate>2024</risdate><volume>64</volume><issue>2</issue><spage>157</spage><epage>169</epage><pages>157-169</pages><issn>1042-9832</issn><eissn>1098-2418</eissn><abstract>The set‐coloring Ramsey number Rr,s(k)$$ {R}_{r,s}(k) $$ is defined to be the minimum n$$ n $$ such that if each edge of the complete graph Kn$$ {K}_n $$ is assigned a set of s$$ s $$ colors from {1,…,r}$$ \left\{1,\dots, r\right\} $$, then one of the colors contains a monochromatic clique of size k$$ k $$. The case s=1$$ s=1 $$ is the usual r$$ r $$‐color Ramsey number, and the case s=r−1$$ s=r-1 $$ was studied by Erdős, Hajnal and Rado in 1965, and by Erdős and Szemerédi in 1972. The first significant results for general s$$ s $$ were obtained only recently, by Conlon, Fox, He, Mubayi, Suk and Verstraëte, who showed that Rr,s(k)=2Θ(kr)$$ {R}_{r,s}(k)={2}^{\Theta (kr)} $$ if s/r$$ s/r $$ is bounded away from 0 and 1. In the range s=r−o(r)$$ s=r-o(r) $$, however, their upper and lower bounds diverge significantly. In this note we introduce a new (random) coloring, and use it to determine Rr,s(k)$$ {R}_{r,s}(k) $$ up to polylogarithmic factors in the exponent for essentially all r$$ r $$, s$$ s $$, and k$$ k $$.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38516561</pmid><doi>10.1002/rsa.21173</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0004-7292-463X</orcidid><orcidid>https://orcid.org/0000-0002-7826-7907</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1042-9832
ispartof Random structures & algorithms, 2024-03, Vol.64 (2), p.157-169
issn 1042-9832
1098-2418
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10952192
source Wiley
subjects Coloring
Lower bounds
probabilistic method
Ramsey theory
random graphs
title A lower bound for set‐coloring Ramsey numbers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A32%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20lower%20bound%20for%20set%E2%80%90coloring%20Ramsey%20numbers&rft.jtitle=Random%20structures%20&%20algorithms&rft.au=Arag%C3%A3o,%20Lucas&rft.date=2024-03&rft.volume=64&rft.issue=2&rft.spage=157&rft.epage=169&rft.pages=157-169&rft.issn=1042-9832&rft.eissn=1098-2418&rft_id=info:doi/10.1002/rsa.21173&rft_dat=%3Cproquest_pubme%3E2918136766%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4443-85746a4a0fdd30aed4ca555ab7c8911c36a4001add5a6f30f1566ef496d3379a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918136766&rft_id=info:pmid/38516561&rfr_iscdi=true