Loading…
Mechanical communication within the microtubule through network-based analysis of tubulin dynamics
The identification of the mechanisms underlying the transfer of mechanical vibrations in protein complexes is crucial to understand how these super-assemblies are stabilized to perform specific functions within the cell. In this context, the study of the structural communication and the propagation...
Saved in:
Published in: | Biomechanics and modeling in mechanobiology 2024-04, Vol.23 (2), p.569-579 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c426t-ce4dabaf9ea19e4540e7e83249a57795aea6ac56cee9590a343031fae2a3d9ce3 |
container_end_page | 579 |
container_issue | 2 |
container_start_page | 569 |
container_title | Biomechanics and modeling in mechanobiology |
container_volume | 23 |
creator | Cannariato, Marco Zizzi, Eric A. Pallante, Lorenzo Miceli, Marcello Deriu, Marco A. |
description | The identification of the mechanisms underlying the transfer of mechanical vibrations in protein complexes is crucial to understand how these super-assemblies are stabilized to perform specific functions within the cell. In this context, the study of the structural communication and the propagation of mechanical stimuli within the microtubule (MT) is important given the pivotal role of the latter in cell viability. In this study, we employed molecular modelling and the dynamical network analysis approaches to analyse the MT. The results highlight that
β
-tubulin drives the transfer of mechanical information between protofilaments (PFs), which is altered at the seam due to a different interaction pattern. Moreover, while the key residues involved in the structural communication along the PF are generally conserved, a higher diversity was observed for amino acids mediating the lateral communication. Taken together, these results might explain why MTs with different PF numbers are formed in different organisms or with different
β
-tubulin isotypes. |
doi_str_mv | 10.1007/s10237-023-01792-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10963519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2899370310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-ce4dabaf9ea19e4540e7e83249a57795aea6ac56cee9590a343031fae2a3d9ce3</originalsourceid><addsrcrecordid>eNp9kc1u1TAQha0KREvhBbqoIrFhE7BjJ45XFarKj1TEBtbWxJncuCR2ayet7tsz7S0XyoLN2NZ8c8Yzh7ETwd8JzvX7LHgldUmh5EKbqqwP2JFohC61UfzZ_l6bQ_Yy5yvOKy5b-YIdypY3XNTNEeu-ohsheAdT4eI8r_fXxcdQ3Pll9KFYRixm71Jc1m6dkN4prpuxCLjcxfSz7CBjX0CAaZt9LuJQPIBU2W8DUGV-xZ4PMGV8_Xgesx8fL76ffy4vv336cv7hsnSqapbSoeqhg8EgCIOqVhw1trJSBmpNQwBCA65uHCJNxEEqyaUYACuQvXEoj9nZTvd67WbsHYYlwWSvk58hbW0Eb59mgh_tJt5awU0ja2FI4e2jQoo3K-bFzj47nCYIGNdsq9YYqakrJ_TNP-hVXBNtgSjTKqJUq4mqdhTtL-eEw_43gtt7D-3OQ0vBPnhoayo6_XuOfclv0wiQOyBTKmww_en9H9lf7I-qog</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2984370487</pqid></control><display><type>article</type><title>Mechanical communication within the microtubule through network-based analysis of tubulin dynamics</title><source>Springer Nature</source><creator>Cannariato, Marco ; Zizzi, Eric A. ; Pallante, Lorenzo ; Miceli, Marcello ; Deriu, Marco A.</creator><creatorcontrib>Cannariato, Marco ; Zizzi, Eric A. ; Pallante, Lorenzo ; Miceli, Marcello ; Deriu, Marco A.</creatorcontrib><description>The identification of the mechanisms underlying the transfer of mechanical vibrations in protein complexes is crucial to understand how these super-assemblies are stabilized to perform specific functions within the cell. In this context, the study of the structural communication and the propagation of mechanical stimuli within the microtubule (MT) is important given the pivotal role of the latter in cell viability. In this study, we employed molecular modelling and the dynamical network analysis approaches to analyse the MT. The results highlight that
β
-tubulin drives the transfer of mechanical information between protofilaments (PFs), which is altered at the seam due to a different interaction pattern. Moreover, while the key residues involved in the structural communication along the PF are generally conserved, a higher diversity was observed for amino acids mediating the lateral communication. Taken together, these results might explain why MTs with different PF numbers are formed in different organisms or with different
β
-tubulin isotypes.</description><identifier>ISSN: 1617-7959</identifier><identifier>ISSN: 1617-7940</identifier><identifier>EISSN: 1617-7940</identifier><identifier>DOI: 10.1007/s10237-023-01792-5</identifier><identifier>PMID: 38060156</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amino acids ; Biological and Medical Physics ; Biomedical Engineering and Bioengineering ; Biophysics ; Cell interactions ; Cell viability ; Communication ; Engineering ; Isotypes ; Mechanical stimuli ; Molecular modelling ; Network analysis ; Original Paper ; Theoretical and Applied Mechanics ; Tubulin ; Vibrations</subject><ispartof>Biomechanics and modeling in mechanobiology, 2024-04, Vol.23 (2), p.569-579</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c426t-ce4dabaf9ea19e4540e7e83249a57795aea6ac56cee9590a343031fae2a3d9ce3</cites><orcidid>0000-0001-6690-5986 ; 0000-0001-9969-6519 ; 0000-0003-1918-1772 ; 0000-0002-7787-3470 ; 0000-0002-2763-5407</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38060156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cannariato, Marco</creatorcontrib><creatorcontrib>Zizzi, Eric A.</creatorcontrib><creatorcontrib>Pallante, Lorenzo</creatorcontrib><creatorcontrib>Miceli, Marcello</creatorcontrib><creatorcontrib>Deriu, Marco A.</creatorcontrib><title>Mechanical communication within the microtubule through network-based analysis of tubulin dynamics</title><title>Biomechanics and modeling in mechanobiology</title><addtitle>Biomech Model Mechanobiol</addtitle><addtitle>Biomech Model Mechanobiol</addtitle><description>The identification of the mechanisms underlying the transfer of mechanical vibrations in protein complexes is crucial to understand how these super-assemblies are stabilized to perform specific functions within the cell. In this context, the study of the structural communication and the propagation of mechanical stimuli within the microtubule (MT) is important given the pivotal role of the latter in cell viability. In this study, we employed molecular modelling and the dynamical network analysis approaches to analyse the MT. The results highlight that
β
-tubulin drives the transfer of mechanical information between protofilaments (PFs), which is altered at the seam due to a different interaction pattern. Moreover, while the key residues involved in the structural communication along the PF are generally conserved, a higher diversity was observed for amino acids mediating the lateral communication. Taken together, these results might explain why MTs with different PF numbers are formed in different organisms or with different
β
-tubulin isotypes.</description><subject>Amino acids</subject><subject>Biological and Medical Physics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biophysics</subject><subject>Cell interactions</subject><subject>Cell viability</subject><subject>Communication</subject><subject>Engineering</subject><subject>Isotypes</subject><subject>Mechanical stimuli</subject><subject>Molecular modelling</subject><subject>Network analysis</subject><subject>Original Paper</subject><subject>Theoretical and Applied Mechanics</subject><subject>Tubulin</subject><subject>Vibrations</subject><issn>1617-7959</issn><issn>1617-7940</issn><issn>1617-7940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1TAQha0KREvhBbqoIrFhE7BjJ45XFarKj1TEBtbWxJncuCR2ayet7tsz7S0XyoLN2NZ8c8Yzh7ETwd8JzvX7LHgldUmh5EKbqqwP2JFohC61UfzZ_l6bQ_Yy5yvOKy5b-YIdypY3XNTNEeu-ohsheAdT4eI8r_fXxcdQ3Pll9KFYRixm71Jc1m6dkN4prpuxCLjcxfSz7CBjX0CAaZt9LuJQPIBU2W8DUGV-xZ4PMGV8_Xgesx8fL76ffy4vv336cv7hsnSqapbSoeqhg8EgCIOqVhw1trJSBmpNQwBCA65uHCJNxEEqyaUYACuQvXEoj9nZTvd67WbsHYYlwWSvk58hbW0Eb59mgh_tJt5awU0ja2FI4e2jQoo3K-bFzj47nCYIGNdsq9YYqakrJ_TNP-hVXBNtgSjTKqJUq4mqdhTtL-eEw_43gtt7D-3OQ0vBPnhoayo6_XuOfclv0wiQOyBTKmww_en9H9lf7I-qog</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Cannariato, Marco</creator><creator>Zizzi, Eric A.</creator><creator>Pallante, Lorenzo</creator><creator>Miceli, Marcello</creator><creator>Deriu, Marco A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TB</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6690-5986</orcidid><orcidid>https://orcid.org/0000-0001-9969-6519</orcidid><orcidid>https://orcid.org/0000-0003-1918-1772</orcidid><orcidid>https://orcid.org/0000-0002-7787-3470</orcidid><orcidid>https://orcid.org/0000-0002-2763-5407</orcidid></search><sort><creationdate>20240401</creationdate><title>Mechanical communication within the microtubule through network-based analysis of tubulin dynamics</title><author>Cannariato, Marco ; Zizzi, Eric A. ; Pallante, Lorenzo ; Miceli, Marcello ; Deriu, Marco A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-ce4dabaf9ea19e4540e7e83249a57795aea6ac56cee9590a343031fae2a3d9ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amino acids</topic><topic>Biological and Medical Physics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biophysics</topic><topic>Cell interactions</topic><topic>Cell viability</topic><topic>Communication</topic><topic>Engineering</topic><topic>Isotypes</topic><topic>Mechanical stimuli</topic><topic>Molecular modelling</topic><topic>Network analysis</topic><topic>Original Paper</topic><topic>Theoretical and Applied Mechanics</topic><topic>Tubulin</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cannariato, Marco</creatorcontrib><creatorcontrib>Zizzi, Eric A.</creatorcontrib><creatorcontrib>Pallante, Lorenzo</creatorcontrib><creatorcontrib>Miceli, Marcello</creatorcontrib><creatorcontrib>Deriu, Marco A.</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomechanics and modeling in mechanobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cannariato, Marco</au><au>Zizzi, Eric A.</au><au>Pallante, Lorenzo</au><au>Miceli, Marcello</au><au>Deriu, Marco A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical communication within the microtubule through network-based analysis of tubulin dynamics</atitle><jtitle>Biomechanics and modeling in mechanobiology</jtitle><stitle>Biomech Model Mechanobiol</stitle><addtitle>Biomech Model Mechanobiol</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>23</volume><issue>2</issue><spage>569</spage><epage>579</epage><pages>569-579</pages><issn>1617-7959</issn><issn>1617-7940</issn><eissn>1617-7940</eissn><abstract>The identification of the mechanisms underlying the transfer of mechanical vibrations in protein complexes is crucial to understand how these super-assemblies are stabilized to perform specific functions within the cell. In this context, the study of the structural communication and the propagation of mechanical stimuli within the microtubule (MT) is important given the pivotal role of the latter in cell viability. In this study, we employed molecular modelling and the dynamical network analysis approaches to analyse the MT. The results highlight that
β
-tubulin drives the transfer of mechanical information between protofilaments (PFs), which is altered at the seam due to a different interaction pattern. Moreover, while the key residues involved in the structural communication along the PF are generally conserved, a higher diversity was observed for amino acids mediating the lateral communication. Taken together, these results might explain why MTs with different PF numbers are formed in different organisms or with different
β
-tubulin isotypes.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38060156</pmid><doi>10.1007/s10237-023-01792-5</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6690-5986</orcidid><orcidid>https://orcid.org/0000-0001-9969-6519</orcidid><orcidid>https://orcid.org/0000-0003-1918-1772</orcidid><orcidid>https://orcid.org/0000-0002-7787-3470</orcidid><orcidid>https://orcid.org/0000-0002-2763-5407</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1617-7959 |
ispartof | Biomechanics and modeling in mechanobiology, 2024-04, Vol.23 (2), p.569-579 |
issn | 1617-7959 1617-7940 1617-7940 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10963519 |
source | Springer Nature |
subjects | Amino acids Biological and Medical Physics Biomedical Engineering and Bioengineering Biophysics Cell interactions Cell viability Communication Engineering Isotypes Mechanical stimuli Molecular modelling Network analysis Original Paper Theoretical and Applied Mechanics Tubulin Vibrations |
title | Mechanical communication within the microtubule through network-based analysis of tubulin dynamics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A16%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20communication%20within%20the%20microtubule%20through%20network-based%20analysis%20of%20tubulin%20dynamics&rft.jtitle=Biomechanics%20and%20modeling%20in%20mechanobiology&rft.au=Cannariato,%20Marco&rft.date=2024-04-01&rft.volume=23&rft.issue=2&rft.spage=569&rft.epage=579&rft.pages=569-579&rft.issn=1617-7959&rft.eissn=1617-7940&rft_id=info:doi/10.1007/s10237-023-01792-5&rft_dat=%3Cproquest_pubme%3E2899370310%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-ce4dabaf9ea19e4540e7e83249a57795aea6ac56cee9590a343031fae2a3d9ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2984370487&rft_id=info:pmid/38060156&rfr_iscdi=true |