Loading…

Mechanical communication within the microtubule through network-based analysis of tubulin dynamics

The identification of the mechanisms underlying the transfer of mechanical vibrations in protein complexes is crucial to understand how these super-assemblies are stabilized to perform specific functions within the cell. In this context, the study of the structural communication and the propagation...

Full description

Saved in:
Bibliographic Details
Published in:Biomechanics and modeling in mechanobiology 2024-04, Vol.23 (2), p.569-579
Main Authors: Cannariato, Marco, Zizzi, Eric A., Pallante, Lorenzo, Miceli, Marcello, Deriu, Marco A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c426t-ce4dabaf9ea19e4540e7e83249a57795aea6ac56cee9590a343031fae2a3d9ce3
container_end_page 579
container_issue 2
container_start_page 569
container_title Biomechanics and modeling in mechanobiology
container_volume 23
creator Cannariato, Marco
Zizzi, Eric A.
Pallante, Lorenzo
Miceli, Marcello
Deriu, Marco A.
description The identification of the mechanisms underlying the transfer of mechanical vibrations in protein complexes is crucial to understand how these super-assemblies are stabilized to perform specific functions within the cell. In this context, the study of the structural communication and the propagation of mechanical stimuli within the microtubule (MT) is important given the pivotal role of the latter in cell viability. In this study, we employed molecular modelling and the dynamical network analysis approaches to analyse the MT. The results highlight that β -tubulin drives the transfer of mechanical information between protofilaments (PFs), which is altered at the seam due to a different interaction pattern. Moreover, while the key residues involved in the structural communication along the PF are generally conserved, a higher diversity was observed for amino acids mediating the lateral communication. Taken together, these results might explain why MTs with different PF numbers are formed in different organisms or with different β -tubulin isotypes.
doi_str_mv 10.1007/s10237-023-01792-5
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10963519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2899370310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-ce4dabaf9ea19e4540e7e83249a57795aea6ac56cee9590a343031fae2a3d9ce3</originalsourceid><addsrcrecordid>eNp9kc1u1TAQha0KREvhBbqoIrFhE7BjJ45XFarKj1TEBtbWxJncuCR2ayet7tsz7S0XyoLN2NZ8c8Yzh7ETwd8JzvX7LHgldUmh5EKbqqwP2JFohC61UfzZ_l6bQ_Yy5yvOKy5b-YIdypY3XNTNEeu-ohsheAdT4eI8r_fXxcdQ3Pll9KFYRixm71Jc1m6dkN4prpuxCLjcxfSz7CBjX0CAaZt9LuJQPIBU2W8DUGV-xZ4PMGV8_Xgesx8fL76ffy4vv336cv7hsnSqapbSoeqhg8EgCIOqVhw1trJSBmpNQwBCA65uHCJNxEEqyaUYACuQvXEoj9nZTvd67WbsHYYlwWSvk58hbW0Eb59mgh_tJt5awU0ja2FI4e2jQoo3K-bFzj47nCYIGNdsq9YYqakrJ_TNP-hVXBNtgSjTKqJUq4mqdhTtL-eEw_43gtt7D-3OQ0vBPnhoayo6_XuOfclv0wiQOyBTKmww_en9H9lf7I-qog</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2984370487</pqid></control><display><type>article</type><title>Mechanical communication within the microtubule through network-based analysis of tubulin dynamics</title><source>Springer Nature</source><creator>Cannariato, Marco ; Zizzi, Eric A. ; Pallante, Lorenzo ; Miceli, Marcello ; Deriu, Marco A.</creator><creatorcontrib>Cannariato, Marco ; Zizzi, Eric A. ; Pallante, Lorenzo ; Miceli, Marcello ; Deriu, Marco A.</creatorcontrib><description>The identification of the mechanisms underlying the transfer of mechanical vibrations in protein complexes is crucial to understand how these super-assemblies are stabilized to perform specific functions within the cell. In this context, the study of the structural communication and the propagation of mechanical stimuli within the microtubule (MT) is important given the pivotal role of the latter in cell viability. In this study, we employed molecular modelling and the dynamical network analysis approaches to analyse the MT. The results highlight that β -tubulin drives the transfer of mechanical information between protofilaments (PFs), which is altered at the seam due to a different interaction pattern. Moreover, while the key residues involved in the structural communication along the PF are generally conserved, a higher diversity was observed for amino acids mediating the lateral communication. Taken together, these results might explain why MTs with different PF numbers are formed in different organisms or with different β -tubulin isotypes.</description><identifier>ISSN: 1617-7959</identifier><identifier>ISSN: 1617-7940</identifier><identifier>EISSN: 1617-7940</identifier><identifier>DOI: 10.1007/s10237-023-01792-5</identifier><identifier>PMID: 38060156</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amino acids ; Biological and Medical Physics ; Biomedical Engineering and Bioengineering ; Biophysics ; Cell interactions ; Cell viability ; Communication ; Engineering ; Isotypes ; Mechanical stimuli ; Molecular modelling ; Network analysis ; Original Paper ; Theoretical and Applied Mechanics ; Tubulin ; Vibrations</subject><ispartof>Biomechanics and modeling in mechanobiology, 2024-04, Vol.23 (2), p.569-579</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c426t-ce4dabaf9ea19e4540e7e83249a57795aea6ac56cee9590a343031fae2a3d9ce3</cites><orcidid>0000-0001-6690-5986 ; 0000-0001-9969-6519 ; 0000-0003-1918-1772 ; 0000-0002-7787-3470 ; 0000-0002-2763-5407</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38060156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cannariato, Marco</creatorcontrib><creatorcontrib>Zizzi, Eric A.</creatorcontrib><creatorcontrib>Pallante, Lorenzo</creatorcontrib><creatorcontrib>Miceli, Marcello</creatorcontrib><creatorcontrib>Deriu, Marco A.</creatorcontrib><title>Mechanical communication within the microtubule through network-based analysis of tubulin dynamics</title><title>Biomechanics and modeling in mechanobiology</title><addtitle>Biomech Model Mechanobiol</addtitle><addtitle>Biomech Model Mechanobiol</addtitle><description>The identification of the mechanisms underlying the transfer of mechanical vibrations in protein complexes is crucial to understand how these super-assemblies are stabilized to perform specific functions within the cell. In this context, the study of the structural communication and the propagation of mechanical stimuli within the microtubule (MT) is important given the pivotal role of the latter in cell viability. In this study, we employed molecular modelling and the dynamical network analysis approaches to analyse the MT. The results highlight that β -tubulin drives the transfer of mechanical information between protofilaments (PFs), which is altered at the seam due to a different interaction pattern. Moreover, while the key residues involved in the structural communication along the PF are generally conserved, a higher diversity was observed for amino acids mediating the lateral communication. Taken together, these results might explain why MTs with different PF numbers are formed in different organisms or with different β -tubulin isotypes.</description><subject>Amino acids</subject><subject>Biological and Medical Physics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biophysics</subject><subject>Cell interactions</subject><subject>Cell viability</subject><subject>Communication</subject><subject>Engineering</subject><subject>Isotypes</subject><subject>Mechanical stimuli</subject><subject>Molecular modelling</subject><subject>Network analysis</subject><subject>Original Paper</subject><subject>Theoretical and Applied Mechanics</subject><subject>Tubulin</subject><subject>Vibrations</subject><issn>1617-7959</issn><issn>1617-7940</issn><issn>1617-7940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1TAQha0KREvhBbqoIrFhE7BjJ45XFarKj1TEBtbWxJncuCR2ayet7tsz7S0XyoLN2NZ8c8Yzh7ETwd8JzvX7LHgldUmh5EKbqqwP2JFohC61UfzZ_l6bQ_Yy5yvOKy5b-YIdypY3XNTNEeu-ohsheAdT4eI8r_fXxcdQ3Pll9KFYRixm71Jc1m6dkN4prpuxCLjcxfSz7CBjX0CAaZt9LuJQPIBU2W8DUGV-xZ4PMGV8_Xgesx8fL76ffy4vv336cv7hsnSqapbSoeqhg8EgCIOqVhw1trJSBmpNQwBCA65uHCJNxEEqyaUYACuQvXEoj9nZTvd67WbsHYYlwWSvk58hbW0Eb59mgh_tJt5awU0ja2FI4e2jQoo3K-bFzj47nCYIGNdsq9YYqakrJ_TNP-hVXBNtgSjTKqJUq4mqdhTtL-eEw_43gtt7D-3OQ0vBPnhoayo6_XuOfclv0wiQOyBTKmww_en9H9lf7I-qog</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Cannariato, Marco</creator><creator>Zizzi, Eric A.</creator><creator>Pallante, Lorenzo</creator><creator>Miceli, Marcello</creator><creator>Deriu, Marco A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TB</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6690-5986</orcidid><orcidid>https://orcid.org/0000-0001-9969-6519</orcidid><orcidid>https://orcid.org/0000-0003-1918-1772</orcidid><orcidid>https://orcid.org/0000-0002-7787-3470</orcidid><orcidid>https://orcid.org/0000-0002-2763-5407</orcidid></search><sort><creationdate>20240401</creationdate><title>Mechanical communication within the microtubule through network-based analysis of tubulin dynamics</title><author>Cannariato, Marco ; Zizzi, Eric A. ; Pallante, Lorenzo ; Miceli, Marcello ; Deriu, Marco A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-ce4dabaf9ea19e4540e7e83249a57795aea6ac56cee9590a343031fae2a3d9ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amino acids</topic><topic>Biological and Medical Physics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biophysics</topic><topic>Cell interactions</topic><topic>Cell viability</topic><topic>Communication</topic><topic>Engineering</topic><topic>Isotypes</topic><topic>Mechanical stimuli</topic><topic>Molecular modelling</topic><topic>Network analysis</topic><topic>Original Paper</topic><topic>Theoretical and Applied Mechanics</topic><topic>Tubulin</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cannariato, Marco</creatorcontrib><creatorcontrib>Zizzi, Eric A.</creatorcontrib><creatorcontrib>Pallante, Lorenzo</creatorcontrib><creatorcontrib>Miceli, Marcello</creatorcontrib><creatorcontrib>Deriu, Marco A.</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomechanics and modeling in mechanobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cannariato, Marco</au><au>Zizzi, Eric A.</au><au>Pallante, Lorenzo</au><au>Miceli, Marcello</au><au>Deriu, Marco A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical communication within the microtubule through network-based analysis of tubulin dynamics</atitle><jtitle>Biomechanics and modeling in mechanobiology</jtitle><stitle>Biomech Model Mechanobiol</stitle><addtitle>Biomech Model Mechanobiol</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>23</volume><issue>2</issue><spage>569</spage><epage>579</epage><pages>569-579</pages><issn>1617-7959</issn><issn>1617-7940</issn><eissn>1617-7940</eissn><abstract>The identification of the mechanisms underlying the transfer of mechanical vibrations in protein complexes is crucial to understand how these super-assemblies are stabilized to perform specific functions within the cell. In this context, the study of the structural communication and the propagation of mechanical stimuli within the microtubule (MT) is important given the pivotal role of the latter in cell viability. In this study, we employed molecular modelling and the dynamical network analysis approaches to analyse the MT. The results highlight that β -tubulin drives the transfer of mechanical information between protofilaments (PFs), which is altered at the seam due to a different interaction pattern. Moreover, while the key residues involved in the structural communication along the PF are generally conserved, a higher diversity was observed for amino acids mediating the lateral communication. Taken together, these results might explain why MTs with different PF numbers are formed in different organisms or with different β -tubulin isotypes.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38060156</pmid><doi>10.1007/s10237-023-01792-5</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6690-5986</orcidid><orcidid>https://orcid.org/0000-0001-9969-6519</orcidid><orcidid>https://orcid.org/0000-0003-1918-1772</orcidid><orcidid>https://orcid.org/0000-0002-7787-3470</orcidid><orcidid>https://orcid.org/0000-0002-2763-5407</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1617-7959
ispartof Biomechanics and modeling in mechanobiology, 2024-04, Vol.23 (2), p.569-579
issn 1617-7959
1617-7940
1617-7940
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10963519
source Springer Nature
subjects Amino acids
Biological and Medical Physics
Biomedical Engineering and Bioengineering
Biophysics
Cell interactions
Cell viability
Communication
Engineering
Isotypes
Mechanical stimuli
Molecular modelling
Network analysis
Original Paper
Theoretical and Applied Mechanics
Tubulin
Vibrations
title Mechanical communication within the microtubule through network-based analysis of tubulin dynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A16%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20communication%20within%20the%20microtubule%20through%20network-based%20analysis%20of%20tubulin%20dynamics&rft.jtitle=Biomechanics%20and%20modeling%20in%20mechanobiology&rft.au=Cannariato,%20Marco&rft.date=2024-04-01&rft.volume=23&rft.issue=2&rft.spage=569&rft.epage=579&rft.pages=569-579&rft.issn=1617-7959&rft.eissn=1617-7940&rft_id=info:doi/10.1007/s10237-023-01792-5&rft_dat=%3Cproquest_pubme%3E2899370310%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-ce4dabaf9ea19e4540e7e83249a57795aea6ac56cee9590a343031fae2a3d9ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2984370487&rft_id=info:pmid/38060156&rfr_iscdi=true