Loading…
Benchmarking Active Learning Protocols for Ligand-Binding Affinity Prediction
Active learning (AL) has become a powerful tool in computational drug discovery, enabling the identification of top binders from vast molecular libraries. To design a robust AL protocol, it is important to understand the influence of AL parameters, as well as the features of the data sets on the out...
Saved in:
Published in: | Journal of chemical information and modeling 2024-03, Vol.64 (6), p.1955-1965 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a462t-5dbfd084eafb028cf51e498ca22833c3bc54e33c5b5aa9c613314143349626213 |
---|---|
cites | cdi_FETCH-LOGICAL-a462t-5dbfd084eafb028cf51e498ca22833c3bc54e33c5b5aa9c613314143349626213 |
container_end_page | 1965 |
container_issue | 6 |
container_start_page | 1955 |
container_title | Journal of chemical information and modeling |
container_volume | 64 |
creator | Gorantla, Rohan Kubincová, Alžbeta Suutari, Benjamin Cossins, Benjamin P. Mey, Antonia S. J. S. |
description | Active learning (AL) has become a powerful tool in computational drug discovery, enabling the identification of top binders from vast molecular libraries. To design a robust AL protocol, it is important to understand the influence of AL parameters, as well as the features of the data sets on the outcomes. We use four affinity data sets for different targets (TYK2, USP7, D2R, Mpro) to systematically evaluate the performance of machine learning models [Gaussian process (GP) model and Chemprop model], sample selection protocols, and the batch size based on metrics describing the overall predictive power of the model (R2, Spearman rank, root-mean-square error) as well as the accurate identification of top 2%/5% binders (Recall, F1 score). Both models have a comparable Recall of top binders on large data sets, but the GP model surpasses the Chemprop model when training data are sparse. A larger initial batch size, especially on diverse data sets, increased the Recall of both models as well as overall correlation metrics. However, for subsequent cycles, smaller batch sizes of 20 or 30 compounds proved to be desirable. Furthermore, adding artificial Gaussian noise to the data up to a certain threshold still allowed the model to identify clusters with top-scoring compounds. However, excessive noise ( |
doi_str_mv | 10.1021/acs.jcim.4c00220 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10966646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2986181401</sourcerecordid><originalsourceid>FETCH-LOGICAL-a462t-5dbfd084eafb028cf51e498ca22833c3bc54e33c5b5aa9c613314143349626213</originalsourceid><addsrcrecordid>eNp1kUtLAzEUhYMoVqt7V1Jw48KpeU3MrKQtvqCiCwV3IZPJtKnTpCYzhf570ycquMoN-c7JuRwAzhDsIojRtVShO1Fm2qUKQozhHjhCKc2SjMGP_e2cZqwFjkOYQEhIxvAhaBFOKUMEHYHnvrZqPJX-09hRp6dqM9edoZbeLu-v3tVOuSp0Suc7QzOStkj6xhYruCyNNfUiUrowUensCTgoZRX06eZsg_f7u7fBYzJ8eXga9IaJpAzXSVrkZQE51bLMIeaqTJGmGVcSY06IIrlKqY5DmqdSZiomJYgiSgiN8RlGpA1u176zJp_qQmlbe1mJmTdxk4Vw0ojfL9aMxcjNBYIZY4yy6HC5cfDuq9GhFlMTlK4qabVrgsAZ4ZjfIMgjevEHnbjG27hfpDhDHFG4jATXlPIuBK_LXRoExbIsEcsSy7LEpqwoOf-5xU6wbScCV2tgJd1--q_fNzy_oHY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2986181401</pqid></control><display><type>article</type><title>Benchmarking Active Learning Protocols for Ligand-Binding Affinity Prediction</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Gorantla, Rohan ; Kubincová, Alžbeta ; Suutari, Benjamin ; Cossins, Benjamin P. ; Mey, Antonia S. J. S.</creator><creatorcontrib>Gorantla, Rohan ; Kubincová, Alžbeta ; Suutari, Benjamin ; Cossins, Benjamin P. ; Mey, Antonia S. J. S.</creatorcontrib><description>Active learning (AL) has become a powerful tool in computational drug discovery, enabling the identification of top binders from vast molecular libraries. To design a robust AL protocol, it is important to understand the influence of AL parameters, as well as the features of the data sets on the outcomes. We use four affinity data sets for different targets (TYK2, USP7, D2R, Mpro) to systematically evaluate the performance of machine learning models [Gaussian process (GP) model and Chemprop model], sample selection protocols, and the batch size based on metrics describing the overall predictive power of the model (R2, Spearman rank, root-mean-square error) as well as the accurate identification of top 2%/5% binders (Recall, F1 score). Both models have a comparable Recall of top binders on large data sets, but the GP model surpasses the Chemprop model when training data are sparse. A larger initial batch size, especially on diverse data sets, increased the Recall of both models as well as overall correlation metrics. However, for subsequent cycles, smaller batch sizes of 20 or 30 compounds proved to be desirable. Furthermore, adding artificial Gaussian noise to the data up to a certain threshold still allowed the model to identify clusters with top-scoring compounds. However, excessive noise (<1σ) did impact the model’s predictive and exploitative capabilities.</description><identifier>ISSN: 1549-9596</identifier><identifier>ISSN: 1549-960X</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.4c00220</identifier><identifier>PMID: 38446131</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Active learning ; Affinity ; Benchmarking ; Datasets ; Drug Discovery - methods ; Gaussian process ; Impact prediction ; Ligands ; Machine Learning ; Machine Learning and Deep Learning ; Noise prediction ; Random noise ; Recall ; Software</subject><ispartof>Journal of chemical information and modeling, 2024-03, Vol.64 (6), p.1955-1965</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Mar 25, 2024</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a462t-5dbfd084eafb028cf51e498ca22833c3bc54e33c5b5aa9c613314143349626213</citedby><cites>FETCH-LOGICAL-a462t-5dbfd084eafb028cf51e498ca22833c3bc54e33c5b5aa9c613314143349626213</cites><orcidid>0000-0001-7512-5252</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38446131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gorantla, Rohan</creatorcontrib><creatorcontrib>Kubincová, Alžbeta</creatorcontrib><creatorcontrib>Suutari, Benjamin</creatorcontrib><creatorcontrib>Cossins, Benjamin P.</creatorcontrib><creatorcontrib>Mey, Antonia S. J. S.</creatorcontrib><title>Benchmarking Active Learning Protocols for Ligand-Binding Affinity Prediction</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Active learning (AL) has become a powerful tool in computational drug discovery, enabling the identification of top binders from vast molecular libraries. To design a robust AL protocol, it is important to understand the influence of AL parameters, as well as the features of the data sets on the outcomes. We use four affinity data sets for different targets (TYK2, USP7, D2R, Mpro) to systematically evaluate the performance of machine learning models [Gaussian process (GP) model and Chemprop model], sample selection protocols, and the batch size based on metrics describing the overall predictive power of the model (R2, Spearman rank, root-mean-square error) as well as the accurate identification of top 2%/5% binders (Recall, F1 score). Both models have a comparable Recall of top binders on large data sets, but the GP model surpasses the Chemprop model when training data are sparse. A larger initial batch size, especially on diverse data sets, increased the Recall of both models as well as overall correlation metrics. However, for subsequent cycles, smaller batch sizes of 20 or 30 compounds proved to be desirable. Furthermore, adding artificial Gaussian noise to the data up to a certain threshold still allowed the model to identify clusters with top-scoring compounds. However, excessive noise (<1σ) did impact the model’s predictive and exploitative capabilities.</description><subject>Active learning</subject><subject>Affinity</subject><subject>Benchmarking</subject><subject>Datasets</subject><subject>Drug Discovery - methods</subject><subject>Gaussian process</subject><subject>Impact prediction</subject><subject>Ligands</subject><subject>Machine Learning</subject><subject>Machine Learning and Deep Learning</subject><subject>Noise prediction</subject><subject>Random noise</subject><subject>Recall</subject><subject>Software</subject><issn>1549-9596</issn><issn>1549-960X</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kUtLAzEUhYMoVqt7V1Jw48KpeU3MrKQtvqCiCwV3IZPJtKnTpCYzhf570ycquMoN-c7JuRwAzhDsIojRtVShO1Fm2qUKQozhHjhCKc2SjMGP_e2cZqwFjkOYQEhIxvAhaBFOKUMEHYHnvrZqPJX-09hRp6dqM9edoZbeLu-v3tVOuSp0Suc7QzOStkj6xhYruCyNNfUiUrowUensCTgoZRX06eZsg_f7u7fBYzJ8eXga9IaJpAzXSVrkZQE51bLMIeaqTJGmGVcSY06IIrlKqY5DmqdSZiomJYgiSgiN8RlGpA1u176zJp_qQmlbe1mJmTdxk4Vw0ojfL9aMxcjNBYIZY4yy6HC5cfDuq9GhFlMTlK4qabVrgsAZ4ZjfIMgjevEHnbjG27hfpDhDHFG4jATXlPIuBK_LXRoExbIsEcsSy7LEpqwoOf-5xU6wbScCV2tgJd1--q_fNzy_oHY</recordid><startdate>20240325</startdate><enddate>20240325</enddate><creator>Gorantla, Rohan</creator><creator>Kubincová, Alžbeta</creator><creator>Suutari, Benjamin</creator><creator>Cossins, Benjamin P.</creator><creator>Mey, Antonia S. J. S.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7512-5252</orcidid></search><sort><creationdate>20240325</creationdate><title>Benchmarking Active Learning Protocols for Ligand-Binding Affinity Prediction</title><author>Gorantla, Rohan ; Kubincová, Alžbeta ; Suutari, Benjamin ; Cossins, Benjamin P. ; Mey, Antonia S. J. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a462t-5dbfd084eafb028cf51e498ca22833c3bc54e33c5b5aa9c613314143349626213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Active learning</topic><topic>Affinity</topic><topic>Benchmarking</topic><topic>Datasets</topic><topic>Drug Discovery - methods</topic><topic>Gaussian process</topic><topic>Impact prediction</topic><topic>Ligands</topic><topic>Machine Learning</topic><topic>Machine Learning and Deep Learning</topic><topic>Noise prediction</topic><topic>Random noise</topic><topic>Recall</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorantla, Rohan</creatorcontrib><creatorcontrib>Kubincová, Alžbeta</creatorcontrib><creatorcontrib>Suutari, Benjamin</creatorcontrib><creatorcontrib>Cossins, Benjamin P.</creatorcontrib><creatorcontrib>Mey, Antonia S. J. S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorantla, Rohan</au><au>Kubincová, Alžbeta</au><au>Suutari, Benjamin</au><au>Cossins, Benjamin P.</au><au>Mey, Antonia S. J. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benchmarking Active Learning Protocols for Ligand-Binding Affinity Prediction</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2024-03-25</date><risdate>2024</risdate><volume>64</volume><issue>6</issue><spage>1955</spage><epage>1965</epage><pages>1955-1965</pages><issn>1549-9596</issn><issn>1549-960X</issn><eissn>1549-960X</eissn><abstract>Active learning (AL) has become a powerful tool in computational drug discovery, enabling the identification of top binders from vast molecular libraries. To design a robust AL protocol, it is important to understand the influence of AL parameters, as well as the features of the data sets on the outcomes. We use four affinity data sets for different targets (TYK2, USP7, D2R, Mpro) to systematically evaluate the performance of machine learning models [Gaussian process (GP) model and Chemprop model], sample selection protocols, and the batch size based on metrics describing the overall predictive power of the model (R2, Spearman rank, root-mean-square error) as well as the accurate identification of top 2%/5% binders (Recall, F1 score). Both models have a comparable Recall of top binders on large data sets, but the GP model surpasses the Chemprop model when training data are sparse. A larger initial batch size, especially on diverse data sets, increased the Recall of both models as well as overall correlation metrics. However, for subsequent cycles, smaller batch sizes of 20 or 30 compounds proved to be desirable. Furthermore, adding artificial Gaussian noise to the data up to a certain threshold still allowed the model to identify clusters with top-scoring compounds. However, excessive noise (<1σ) did impact the model’s predictive and exploitative capabilities.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38446131</pmid><doi>10.1021/acs.jcim.4c00220</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7512-5252</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2024-03, Vol.64 (6), p.1955-1965 |
issn | 1549-9596 1549-960X 1549-960X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10966646 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Active learning Affinity Benchmarking Datasets Drug Discovery - methods Gaussian process Impact prediction Ligands Machine Learning Machine Learning and Deep Learning Noise prediction Random noise Recall Software |
title | Benchmarking Active Learning Protocols for Ligand-Binding Affinity Prediction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A07%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benchmarking%20Active%20Learning%20Protocols%20for%20Ligand-Binding%20Affinity%20Prediction&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Gorantla,%20Rohan&rft.date=2024-03-25&rft.volume=64&rft.issue=6&rft.spage=1955&rft.epage=1965&rft.pages=1955-1965&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.4c00220&rft_dat=%3Cproquest_pubme%3E2986181401%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a462t-5dbfd084eafb028cf51e498ca22833c3bc54e33c5b5aa9c613314143349626213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2986181401&rft_id=info:pmid/38446131&rfr_iscdi=true |