Loading…

Fusedly Deposited Frequency-Selective Composites Fabricated by a Dual-Nozzle 3D Printing as Microwave Filter

We report a fusedly deposited frequency-selective composite (FD-FSCs), fabricated with a dual-nozzle 3D printer using a conductive carbon black (CB) polylactic acid (PLA) composite filament and a pure PLA polymer filament. The square frequency-selective pattern was constructed by the conductive CB/P...

Full description

Saved in:
Bibliographic Details
Published in:Polymers 2024-03, Vol.16 (6), p.786
Main Authors: Cho, Jae-Yeon, Oh, Young-Chan, Shin, Seung-Cheol, Lee, Sun-Kon, Seo, Hyoung-Seock, Lee, Sang-Eui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report a fusedly deposited frequency-selective composite (FD-FSCs), fabricated with a dual-nozzle 3D printer using a conductive carbon black (CB) polylactic acid (PLA) composite filament and a pure PLA polymer filament. The square frequency-selective pattern was constructed by the conductive CB/PLA nanocomposite, and the apertures of the pattern were filled with the pure dielectric PLA material, which allows the FD-FSC to maintain one single plane, even under bending, and also affects the resonating frequency due to the characteristic impedance of PLA ( ' ≈ 2.0). The number of the deposition layer and the printing direction were observed to affect electrical conductivity, complex permittivity, and the frequency selectivity of the FD-FSCs. In addition, the FD-FSCs designed for an X-band showed partial transmission around the resonant frequency and was observed to, quite uniformly, transmit microwaves in the decibel level of -2.17~-2.83 dB in the whole X-band, unlike a metallic frequency selective surface with full transmission at the resonance frequency. FD-FSCs embedded radar absorbing structure (RAS) demonstrates an excellent microwave absorption and a wide effective bandwidth. At a thickness of 4.3 mm, the 10 dB bandwidth covered the entire X-band (8.2~12.4 GHz) range of 4.2 GHz. Therefore, the proposed FD-FSCs fabricated by dual-nozzle 3D printing can be an impedance modifier to expand the design space and the application of radar absorbing materials and structures.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym16060786