Loading…

Enhanced Corrosion Resistance and Mechanical Durability of the Composite PLGA/CaP/Ti Scaffolds for Orthopedic Implants

In addressing the challenge of enhancing orthopedic implants, 3D porous calcium phosphate (CaP) coatings on titanium (Ti) substrates modified with poly(lactic-co-glycolic acid) (PLGA) were proposed. CaP coatings on Ti were deposited using the ultrasonic-assisted micro-arc oxidation (UMAO) method, fo...

Full description

Saved in:
Bibliographic Details
Published in:Polymers 2024-03, Vol.16 (6), p.826
Main Authors: Prosolov, Konstantin A, Komarova, Ekaterina G, Kazantseva, Ekaterina A, Luginin, Nikita A, Kashin, Alexander D, Uvarkin, Pavel V, Sharkeev, Yurii P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c483t-8eb0dd192efa26c239dc268d3e8203e895ad74a4409fc9e157db2950dfa8ce723
cites cdi_FETCH-LOGICAL-c483t-8eb0dd192efa26c239dc268d3e8203e895ad74a4409fc9e157db2950dfa8ce723
container_end_page
container_issue 6
container_start_page 826
container_title Polymers
container_volume 16
creator Prosolov, Konstantin A
Komarova, Ekaterina G
Kazantseva, Ekaterina A
Luginin, Nikita A
Kashin, Alexander D
Uvarkin, Pavel V
Sharkeev, Yurii P
description In addressing the challenge of enhancing orthopedic implants, 3D porous calcium phosphate (CaP) coatings on titanium (Ti) substrates modified with poly(lactic-co-glycolic acid) (PLGA) were proposed. CaP coatings on Ti were deposited using the ultrasonic-assisted micro-arc oxidation (UMAO) method, followed by modification with PLGA through a dip coating process at concentrations of 5%, 8%, and 10%. The addition of PLGA significantly improved adhesive-cohesive strength according to the scratch test, while PLGA to CaP adhesion was found to be not less than 8.1 ± 2.2 MPa according to the peel test. Tensile testing showed a typical fracture of CaP coatings and mechanisms of brittle fracture. Corrosion resistance, assessed via gravimetric and electrochemical methods in 0.9% NaCl and PBS solutions, revealed PLGA's substantial reduction in corrosion rates, with the corrosion current decreasing by two orders of magnitude even for the 5% PLGA/CaP/Ti sample. Also, the PLGA layer significantly enhanced the impedance modulus by two orders of magnitude, indicating a robust barrier against corrosion at all PLGA concentrations. Higher PLGA concentrations offered even greater corrosion resistance and improved mechanical properties. This research underscores the potential of using CaP- and PLGA-modified coatings to extend the life and functionality of orthopedic implants, addressing a significant challenge in biomedical engineering.
doi_str_mv 10.3390/polym16060826
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10975115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A788252865</galeid><sourcerecordid>A788252865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-8eb0dd192efa26c239dc268d3e8203e895ad74a4409fc9e157db2950dfa8ce723</originalsourceid><addsrcrecordid>eNptks9rHCEUx6W0NCHNsdci9NLLZP01M86pLJs0DWxJaNOzuPrMGmZ0qjOB_e_rkjTNliqoPD_f7-PpQ-g9JWecd2Qxxn430IY0RLLmFTpmpOWV4A15_eJ8hE5zvidliLppaPsWHXFZCy44PUYPF2GrgwGLVzGlmH0M-Dtkn6d9FOtg8TcwBfFG9_h8Tnrjez_tcHR42kJRDWNRTYBv1pfLxUrfLG49_mG0c7G3GbuY8HWatnEE6w2-GsZehym_Q2-c7jOcPu0n6OeXi9vV12p9fXm1Wq4rIySfKgkbYi3tGDjNGsN4Zw1rpOUgGSlLV2vbCi0E6ZzpgNat3bCuJtZpaaBl_AR9fvQd580A1kCYku7VmPyg005F7dXhTfBbdRcfFCVdW1NaF4dPTw4p_pohT2rw2UBfyoA4Z8UJFYRw2omCfvwHvY9zCqW-QhHOa9Fy8pe60z0oH1wsic3eVC1bKVnNZLNPe_YfqkwLgzcxgPMlfiCoHgWm_GJO4J6LpETtm0UdNEvhP7x8mWf6T2vw34CBuoM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3003354730</pqid></control><display><type>article</type><title>Enhanced Corrosion Resistance and Mechanical Durability of the Composite PLGA/CaP/Ti Scaffolds for Orthopedic Implants</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Prosolov, Konstantin A ; Komarova, Ekaterina G ; Kazantseva, Ekaterina A ; Luginin, Nikita A ; Kashin, Alexander D ; Uvarkin, Pavel V ; Sharkeev, Yurii P</creator><creatorcontrib>Prosolov, Konstantin A ; Komarova, Ekaterina G ; Kazantseva, Ekaterina A ; Luginin, Nikita A ; Kashin, Alexander D ; Uvarkin, Pavel V ; Sharkeev, Yurii P</creatorcontrib><description>In addressing the challenge of enhancing orthopedic implants, 3D porous calcium phosphate (CaP) coatings on titanium (Ti) substrates modified with poly(lactic-co-glycolic acid) (PLGA) were proposed. CaP coatings on Ti were deposited using the ultrasonic-assisted micro-arc oxidation (UMAO) method, followed by modification with PLGA through a dip coating process at concentrations of 5%, 8%, and 10%. The addition of PLGA significantly improved adhesive-cohesive strength according to the scratch test, while PLGA to CaP adhesion was found to be not less than 8.1 ± 2.2 MPa according to the peel test. Tensile testing showed a typical fracture of CaP coatings and mechanisms of brittle fracture. Corrosion resistance, assessed via gravimetric and electrochemical methods in 0.9% NaCl and PBS solutions, revealed PLGA's substantial reduction in corrosion rates, with the corrosion current decreasing by two orders of magnitude even for the 5% PLGA/CaP/Ti sample. Also, the PLGA layer significantly enhanced the impedance modulus by two orders of magnitude, indicating a robust barrier against corrosion at all PLGA concentrations. Higher PLGA concentrations offered even greater corrosion resistance and improved mechanical properties. This research underscores the potential of using CaP- and PLGA-modified coatings to extend the life and functionality of orthopedic implants, addressing a significant challenge in biomedical engineering.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym16060826</identifier><identifier>PMID: 38543431</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adhesive strength ; Analysis ; Arc deposition ; Biocompatibility ; Biodegradation ; Biomedical engineering ; Calcium phosphate ; Calcium phosphates ; Chemical properties ; Coatings ; Composite materials ; Corrosion currents ; Corrosion rate ; Corrosion resistance ; Drug delivery systems ; Electrolytes ; Glycolic acid ; Hydroxyapatite ; Immersion coating ; Lactic acid ; Mechanical properties ; Orthopaedic implants ; Orthopedic implants ; Orthopedics ; Oxidation ; Peel tests ; Polymers ; Scanning electron microscopy ; Scratch tests ; Substrates ; Surgical implants ; Tensile tests ; Titanium ; Transplants &amp; implants</subject><ispartof>Polymers, 2024-03, Vol.16 (6), p.826</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-8eb0dd192efa26c239dc268d3e8203e895ad74a4409fc9e157db2950dfa8ce723</citedby><cites>FETCH-LOGICAL-c483t-8eb0dd192efa26c239dc268d3e8203e895ad74a4409fc9e157db2950dfa8ce723</cites><orcidid>0000-0001-8364-0393 ; 0000-0003-2176-8636 ; 0000-0003-1860-3654 ; 0000-0001-6504-8193 ; 0000-0001-5037-245X ; 0000-0002-0903-6750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3003354730/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3003354730?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38543431$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prosolov, Konstantin A</creatorcontrib><creatorcontrib>Komarova, Ekaterina G</creatorcontrib><creatorcontrib>Kazantseva, Ekaterina A</creatorcontrib><creatorcontrib>Luginin, Nikita A</creatorcontrib><creatorcontrib>Kashin, Alexander D</creatorcontrib><creatorcontrib>Uvarkin, Pavel V</creatorcontrib><creatorcontrib>Sharkeev, Yurii P</creatorcontrib><title>Enhanced Corrosion Resistance and Mechanical Durability of the Composite PLGA/CaP/Ti Scaffolds for Orthopedic Implants</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>In addressing the challenge of enhancing orthopedic implants, 3D porous calcium phosphate (CaP) coatings on titanium (Ti) substrates modified with poly(lactic-co-glycolic acid) (PLGA) were proposed. CaP coatings on Ti were deposited using the ultrasonic-assisted micro-arc oxidation (UMAO) method, followed by modification with PLGA through a dip coating process at concentrations of 5%, 8%, and 10%. The addition of PLGA significantly improved adhesive-cohesive strength according to the scratch test, while PLGA to CaP adhesion was found to be not less than 8.1 ± 2.2 MPa according to the peel test. Tensile testing showed a typical fracture of CaP coatings and mechanisms of brittle fracture. Corrosion resistance, assessed via gravimetric and electrochemical methods in 0.9% NaCl and PBS solutions, revealed PLGA's substantial reduction in corrosion rates, with the corrosion current decreasing by two orders of magnitude even for the 5% PLGA/CaP/Ti sample. Also, the PLGA layer significantly enhanced the impedance modulus by two orders of magnitude, indicating a robust barrier against corrosion at all PLGA concentrations. Higher PLGA concentrations offered even greater corrosion resistance and improved mechanical properties. This research underscores the potential of using CaP- and PLGA-modified coatings to extend the life and functionality of orthopedic implants, addressing a significant challenge in biomedical engineering.</description><subject>Adhesive strength</subject><subject>Analysis</subject><subject>Arc deposition</subject><subject>Biocompatibility</subject><subject>Biodegradation</subject><subject>Biomedical engineering</subject><subject>Calcium phosphate</subject><subject>Calcium phosphates</subject><subject>Chemical properties</subject><subject>Coatings</subject><subject>Composite materials</subject><subject>Corrosion currents</subject><subject>Corrosion rate</subject><subject>Corrosion resistance</subject><subject>Drug delivery systems</subject><subject>Electrolytes</subject><subject>Glycolic acid</subject><subject>Hydroxyapatite</subject><subject>Immersion coating</subject><subject>Lactic acid</subject><subject>Mechanical properties</subject><subject>Orthopaedic implants</subject><subject>Orthopedic implants</subject><subject>Orthopedics</subject><subject>Oxidation</subject><subject>Peel tests</subject><subject>Polymers</subject><subject>Scanning electron microscopy</subject><subject>Scratch tests</subject><subject>Substrates</subject><subject>Surgical implants</subject><subject>Tensile tests</subject><subject>Titanium</subject><subject>Transplants &amp; implants</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptks9rHCEUx6W0NCHNsdci9NLLZP01M86pLJs0DWxJaNOzuPrMGmZ0qjOB_e_rkjTNliqoPD_f7-PpQ-g9JWecd2Qxxn430IY0RLLmFTpmpOWV4A15_eJ8hE5zvidliLppaPsWHXFZCy44PUYPF2GrgwGLVzGlmH0M-Dtkn6d9FOtg8TcwBfFG9_h8Tnrjez_tcHR42kJRDWNRTYBv1pfLxUrfLG49_mG0c7G3GbuY8HWatnEE6w2-GsZehym_Q2-c7jOcPu0n6OeXi9vV12p9fXm1Wq4rIySfKgkbYi3tGDjNGsN4Zw1rpOUgGSlLV2vbCi0E6ZzpgNat3bCuJtZpaaBl_AR9fvQd580A1kCYku7VmPyg005F7dXhTfBbdRcfFCVdW1NaF4dPTw4p_pohT2rw2UBfyoA4Z8UJFYRw2omCfvwHvY9zCqW-QhHOa9Fy8pe60z0oH1wsic3eVC1bKVnNZLNPe_YfqkwLgzcxgPMlfiCoHgWm_GJO4J6LpETtm0UdNEvhP7x8mWf6T2vw34CBuoM</recordid><startdate>20240315</startdate><enddate>20240315</enddate><creator>Prosolov, Konstantin A</creator><creator>Komarova, Ekaterina G</creator><creator>Kazantseva, Ekaterina A</creator><creator>Luginin, Nikita A</creator><creator>Kashin, Alexander D</creator><creator>Uvarkin, Pavel V</creator><creator>Sharkeev, Yurii P</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8364-0393</orcidid><orcidid>https://orcid.org/0000-0003-2176-8636</orcidid><orcidid>https://orcid.org/0000-0003-1860-3654</orcidid><orcidid>https://orcid.org/0000-0001-6504-8193</orcidid><orcidid>https://orcid.org/0000-0001-5037-245X</orcidid><orcidid>https://orcid.org/0000-0002-0903-6750</orcidid></search><sort><creationdate>20240315</creationdate><title>Enhanced Corrosion Resistance and Mechanical Durability of the Composite PLGA/CaP/Ti Scaffolds for Orthopedic Implants</title><author>Prosolov, Konstantin A ; Komarova, Ekaterina G ; Kazantseva, Ekaterina A ; Luginin, Nikita A ; Kashin, Alexander D ; Uvarkin, Pavel V ; Sharkeev, Yurii P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-8eb0dd192efa26c239dc268d3e8203e895ad74a4409fc9e157db2950dfa8ce723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adhesive strength</topic><topic>Analysis</topic><topic>Arc deposition</topic><topic>Biocompatibility</topic><topic>Biodegradation</topic><topic>Biomedical engineering</topic><topic>Calcium phosphate</topic><topic>Calcium phosphates</topic><topic>Chemical properties</topic><topic>Coatings</topic><topic>Composite materials</topic><topic>Corrosion currents</topic><topic>Corrosion rate</topic><topic>Corrosion resistance</topic><topic>Drug delivery systems</topic><topic>Electrolytes</topic><topic>Glycolic acid</topic><topic>Hydroxyapatite</topic><topic>Immersion coating</topic><topic>Lactic acid</topic><topic>Mechanical properties</topic><topic>Orthopaedic implants</topic><topic>Orthopedic implants</topic><topic>Orthopedics</topic><topic>Oxidation</topic><topic>Peel tests</topic><topic>Polymers</topic><topic>Scanning electron microscopy</topic><topic>Scratch tests</topic><topic>Substrates</topic><topic>Surgical implants</topic><topic>Tensile tests</topic><topic>Titanium</topic><topic>Transplants &amp; implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prosolov, Konstantin A</creatorcontrib><creatorcontrib>Komarova, Ekaterina G</creatorcontrib><creatorcontrib>Kazantseva, Ekaterina A</creatorcontrib><creatorcontrib>Luginin, Nikita A</creatorcontrib><creatorcontrib>Kashin, Alexander D</creatorcontrib><creatorcontrib>Uvarkin, Pavel V</creatorcontrib><creatorcontrib>Sharkeev, Yurii P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prosolov, Konstantin A</au><au>Komarova, Ekaterina G</au><au>Kazantseva, Ekaterina A</au><au>Luginin, Nikita A</au><au>Kashin, Alexander D</au><au>Uvarkin, Pavel V</au><au>Sharkeev, Yurii P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Corrosion Resistance and Mechanical Durability of the Composite PLGA/CaP/Ti Scaffolds for Orthopedic Implants</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2024-03-15</date><risdate>2024</risdate><volume>16</volume><issue>6</issue><spage>826</spage><pages>826-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>In addressing the challenge of enhancing orthopedic implants, 3D porous calcium phosphate (CaP) coatings on titanium (Ti) substrates modified with poly(lactic-co-glycolic acid) (PLGA) were proposed. CaP coatings on Ti were deposited using the ultrasonic-assisted micro-arc oxidation (UMAO) method, followed by modification with PLGA through a dip coating process at concentrations of 5%, 8%, and 10%. The addition of PLGA significantly improved adhesive-cohesive strength according to the scratch test, while PLGA to CaP adhesion was found to be not less than 8.1 ± 2.2 MPa according to the peel test. Tensile testing showed a typical fracture of CaP coatings and mechanisms of brittle fracture. Corrosion resistance, assessed via gravimetric and electrochemical methods in 0.9% NaCl and PBS solutions, revealed PLGA's substantial reduction in corrosion rates, with the corrosion current decreasing by two orders of magnitude even for the 5% PLGA/CaP/Ti sample. Also, the PLGA layer significantly enhanced the impedance modulus by two orders of magnitude, indicating a robust barrier against corrosion at all PLGA concentrations. Higher PLGA concentrations offered even greater corrosion resistance and improved mechanical properties. This research underscores the potential of using CaP- and PLGA-modified coatings to extend the life and functionality of orthopedic implants, addressing a significant challenge in biomedical engineering.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38543431</pmid><doi>10.3390/polym16060826</doi><orcidid>https://orcid.org/0000-0001-8364-0393</orcidid><orcidid>https://orcid.org/0000-0003-2176-8636</orcidid><orcidid>https://orcid.org/0000-0003-1860-3654</orcidid><orcidid>https://orcid.org/0000-0001-6504-8193</orcidid><orcidid>https://orcid.org/0000-0001-5037-245X</orcidid><orcidid>https://orcid.org/0000-0002-0903-6750</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2024-03, Vol.16 (6), p.826
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10975115
source Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Adhesive strength
Analysis
Arc deposition
Biocompatibility
Biodegradation
Biomedical engineering
Calcium phosphate
Calcium phosphates
Chemical properties
Coatings
Composite materials
Corrosion currents
Corrosion rate
Corrosion resistance
Drug delivery systems
Electrolytes
Glycolic acid
Hydroxyapatite
Immersion coating
Lactic acid
Mechanical properties
Orthopaedic implants
Orthopedic implants
Orthopedics
Oxidation
Peel tests
Polymers
Scanning electron microscopy
Scratch tests
Substrates
Surgical implants
Tensile tests
Titanium
Transplants & implants
title Enhanced Corrosion Resistance and Mechanical Durability of the Composite PLGA/CaP/Ti Scaffolds for Orthopedic Implants
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Corrosion%20Resistance%20and%20Mechanical%20Durability%20of%20the%20Composite%20PLGA/CaP/Ti%20Scaffolds%20for%20Orthopedic%20Implants&rft.jtitle=Polymers&rft.au=Prosolov,%20Konstantin%20A&rft.date=2024-03-15&rft.volume=16&rft.issue=6&rft.spage=826&rft.pages=826-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym16060826&rft_dat=%3Cgale_pubme%3EA788252865%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c483t-8eb0dd192efa26c239dc268d3e8203e895ad74a4409fc9e157db2950dfa8ce723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3003354730&rft_id=info:pmid/38543431&rft_galeid=A788252865&rfr_iscdi=true