Loading…

Quadrupole detection FT‐ICR mass spectrometry offers deep profiling of residue oil: A systematic comparison of 2ω 7 Tesla versus 15 Tesla instruments

Mass resolving power is one of the key features of Fourier transform ion cyclotron resonance mass spectrometry (FT‐ICR MS), which enables the molecular characterization of complex mixtures. Quadrupole (2ω) detection provides a significant step forward in FT‐ICR MS performance, as it doubles the reso...

Full description

Saved in:
Bibliographic Details
Published in:Analytical science advances 2021-06, Vol.2 (5-6), p.272-278
Main Authors: Ge, Jinfeng, Ma, Chao, Qi, Yulin, Wang, Xiaowei, Wang, Wei, Hu, Miao, Hu, Qiaozhuan, Yi, Yuan‐Bi, Shi, Dejun, Yue, Fu‐Jun, Li, Si‐Liang, Volmer, Dietrich A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mass resolving power is one of the key features of Fourier transform ion cyclotron resonance mass spectrometry (FT‐ICR MS), which enables the molecular characterization of complex mixtures. Quadrupole (2ω) detection provides a significant step forward in FT‐ICR MS performance, as it doubles the resolving power for a given signal acquisition time. Whether this 2ω detection technique truly substitutes for a higher magnetic field remains unknown however. In this study, a residue oil sample was characterized using both a 2ω 7 Tesla FT‐ICR and a 15 Tesla FT‐ICR instrument, and analytical figures of merit were systematically compared. It was shown that 2ω 7T FT‐ICR MS provided comparable performance in the deep profiling of the complex oil sample, with better signal intensities and reproducibilities for absorption‐mode processing. The 15T FT‐ICR MS gave more precise measurements with better estimates of the sample's elemental compositions. To the best of our knowledge, this is the first published study, which thoroughly compared the performance of 2ω detection on a low magnetic field instrument with that of a high magnetic field FT‐ICR‐MS.
ISSN:2628-5452
2628-5452
DOI:10.1002/ansa.202000123