Loading…

A conceptual framework for astrocyte function

The participation of astrocytes in brain computation was hypothesized in 1992, coinciding with the discovery that these cells display a form of intracellular Ca 2+ signaling sensitive to neuroactive molecules. This finding fostered conceptual leaps crystalized around the idea that astrocytes, once t...

Full description

Saved in:
Bibliographic Details
Published in:Nature neuroscience 2023-11, Vol.26 (11), p.1848-1856
Main Authors: Murphy-Royal, Ciaran, Ching, ShiNung, Papouin, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c475t-58659129f89b355feaa1b133f71f045a813bb87421b9e1bd8ef23ad6a32f28ff3
cites cdi_FETCH-LOGICAL-c475t-58659129f89b355feaa1b133f71f045a813bb87421b9e1bd8ef23ad6a32f28ff3
container_end_page 1856
container_issue 11
container_start_page 1848
container_title Nature neuroscience
container_volume 26
creator Murphy-Royal, Ciaran
Ching, ShiNung
Papouin, Thomas
description The participation of astrocytes in brain computation was hypothesized in 1992, coinciding with the discovery that these cells display a form of intracellular Ca 2+ signaling sensitive to neuroactive molecules. This finding fostered conceptual leaps crystalized around the idea that astrocytes, once thought to be passive, participate actively in brain signaling and outputs. A multitude of disparate roles of astrocytes has since emerged, but their meaningful integration has been muddied by the lack of consensus and models of how we conceive the functional position of these cells in brain circuitry. In this Perspective, we propose an intuitive, data-driven and transferable conceptual framework we coin ‘contextual guidance’. It describes astrocytes as ‘contextual gates’ that shape neural circuitry in an adaptive, state-dependent fashion. This paradigm provides fresh perspectives on principles of astrocyte signaling and its relevance to brain function, which could spur new experimental avenues, including in computational space. Recent progress in astrocyte biology requires a more cohesive conceptual framework. This Perspective introduces a ‘contextual guidance’ paradigm in which astrocytes are key to adaptive modeling of neural circuits in response to state changes.
doi_str_mv 10.1038/s41593-023-01448-8
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10990637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2880103560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-58659129f89b355feaa1b133f71f045a813bb87421b9e1bd8ef23ad6a32f28ff3</originalsourceid><addsrcrecordid>eNp9kTtPwzAUhS0EoqXwBxhQJBYWg5-xPSFU8ZIqscBsOaldUtK42Amo_x6XlPIYGCxbut891-ceAI4xOseIyovIMFcUIpIOZkxCuQOGmLMcYkHy3fRGSsCc8HwADmKcI4QEl2ofDKiQXAhBhwBeZaVvSrtsO1NnLpiFfffhJXM-ZCa2wZer1maua8q28s0h2HOmjvZoc4_A08314_gOTh5u78dXE1gywVvIZc4VJspJVVDOnTUGF5hSJ7BDjBuJaVFIwQgulMXFVFpHqJnmhhJHpHN0BC573WVXLOy0tE0bTK2XoVqYsNLeVPp3pame9cy_6eRYoZyKpHC2UQj-tbOx1YsqlrauTWN9FzWREqUl8hwl9PQPOvddaJK_NcUUZUrRRJGeKoOPMVi3_Q1Geh2H7uPQKQ79GYeWqenkp49ty9f-E0B7IKZSM7Phe_Y_sh-Tk5VU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884934993</pqid></control><display><type>article</type><title>A conceptual framework for astrocyte function</title><source>Springer Nature - Connect here FIRST to enable access</source><creator>Murphy-Royal, Ciaran ; Ching, ShiNung ; Papouin, Thomas</creator><creatorcontrib>Murphy-Royal, Ciaran ; Ching, ShiNung ; Papouin, Thomas</creatorcontrib><description>The participation of astrocytes in brain computation was hypothesized in 1992, coinciding with the discovery that these cells display a form of intracellular Ca 2+ signaling sensitive to neuroactive molecules. This finding fostered conceptual leaps crystalized around the idea that astrocytes, once thought to be passive, participate actively in brain signaling and outputs. A multitude of disparate roles of astrocytes has since emerged, but their meaningful integration has been muddied by the lack of consensus and models of how we conceive the functional position of these cells in brain circuitry. In this Perspective, we propose an intuitive, data-driven and transferable conceptual framework we coin ‘contextual guidance’. It describes astrocytes as ‘contextual gates’ that shape neural circuitry in an adaptive, state-dependent fashion. This paradigm provides fresh perspectives on principles of astrocyte signaling and its relevance to brain function, which could spur new experimental avenues, including in computational space. Recent progress in astrocyte biology requires a more cohesive conceptual framework. This Perspective introduces a ‘contextual guidance’ paradigm in which astrocytes are key to adaptive modeling of neural circuits in response to state changes.</description><identifier>ISSN: 1097-6256</identifier><identifier>ISSN: 1546-1726</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/s41593-023-01448-8</identifier><identifier>PMID: 37857773</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/378/116/1925 ; 631/378/2596/1308 ; 631/378/87 ; Animal Genetics and Genomics ; Astrocytes ; Behavioral Sciences ; Biological Techniques ; Biology ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Calcium (intracellular) ; Calcium ions ; Calcium Signaling ; Calcium signalling ; Circuits ; Computational neuroscience ; Intracellular signalling ; Neural networks ; Neurobiology ; Neurons ; Neurosciences ; Perspective ; Signal Transduction ; Synapses - metabolism</subject><ispartof>Nature neuroscience, 2023-11, Vol.26 (11), p.1848-1856</ispartof><rights>Springer Nature America, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. Springer Nature America, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-58659129f89b355feaa1b133f71f045a813bb87421b9e1bd8ef23ad6a32f28ff3</citedby><cites>FETCH-LOGICAL-c475t-58659129f89b355feaa1b133f71f045a813bb87421b9e1bd8ef23ad6a32f28ff3</cites><orcidid>0000-0001-5288-1944 ; 0000-0001-7545-593X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37857773$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Murphy-Royal, Ciaran</creatorcontrib><creatorcontrib>Ching, ShiNung</creatorcontrib><creatorcontrib>Papouin, Thomas</creatorcontrib><title>A conceptual framework for astrocyte function</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>The participation of astrocytes in brain computation was hypothesized in 1992, coinciding with the discovery that these cells display a form of intracellular Ca 2+ signaling sensitive to neuroactive molecules. This finding fostered conceptual leaps crystalized around the idea that astrocytes, once thought to be passive, participate actively in brain signaling and outputs. A multitude of disparate roles of astrocytes has since emerged, but their meaningful integration has been muddied by the lack of consensus and models of how we conceive the functional position of these cells in brain circuitry. In this Perspective, we propose an intuitive, data-driven and transferable conceptual framework we coin ‘contextual guidance’. It describes astrocytes as ‘contextual gates’ that shape neural circuitry in an adaptive, state-dependent fashion. This paradigm provides fresh perspectives on principles of astrocyte signaling and its relevance to brain function, which could spur new experimental avenues, including in computational space. Recent progress in astrocyte biology requires a more cohesive conceptual framework. This Perspective introduces a ‘contextual guidance’ paradigm in which astrocytes are key to adaptive modeling of neural circuits in response to state changes.</description><subject>631/378/116/1925</subject><subject>631/378/2596/1308</subject><subject>631/378/87</subject><subject>Animal Genetics and Genomics</subject><subject>Astrocytes</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Calcium (intracellular)</subject><subject>Calcium ions</subject><subject>Calcium Signaling</subject><subject>Calcium signalling</subject><subject>Circuits</subject><subject>Computational neuroscience</subject><subject>Intracellular signalling</subject><subject>Neural networks</subject><subject>Neurobiology</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Perspective</subject><subject>Signal Transduction</subject><subject>Synapses - metabolism</subject><issn>1097-6256</issn><issn>1546-1726</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kTtPwzAUhS0EoqXwBxhQJBYWg5-xPSFU8ZIqscBsOaldUtK42Amo_x6XlPIYGCxbut891-ceAI4xOseIyovIMFcUIpIOZkxCuQOGmLMcYkHy3fRGSsCc8HwADmKcI4QEl2ofDKiQXAhBhwBeZaVvSrtsO1NnLpiFfffhJXM-ZCa2wZer1maua8q28s0h2HOmjvZoc4_A08314_gOTh5u78dXE1gywVvIZc4VJspJVVDOnTUGF5hSJ7BDjBuJaVFIwQgulMXFVFpHqJnmhhJHpHN0BC573WVXLOy0tE0bTK2XoVqYsNLeVPp3pame9cy_6eRYoZyKpHC2UQj-tbOx1YsqlrauTWN9FzWREqUl8hwl9PQPOvddaJK_NcUUZUrRRJGeKoOPMVi3_Q1Geh2H7uPQKQ79GYeWqenkp49ty9f-E0B7IKZSM7Phe_Y_sh-Tk5VU</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Murphy-Royal, Ciaran</creator><creator>Ching, ShiNung</creator><creator>Papouin, Thomas</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5288-1944</orcidid><orcidid>https://orcid.org/0000-0001-7545-593X</orcidid></search><sort><creationdate>20231101</creationdate><title>A conceptual framework for astrocyte function</title><author>Murphy-Royal, Ciaran ; Ching, ShiNung ; Papouin, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-58659129f89b355feaa1b133f71f045a813bb87421b9e1bd8ef23ad6a32f28ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/378/116/1925</topic><topic>631/378/2596/1308</topic><topic>631/378/87</topic><topic>Animal Genetics and Genomics</topic><topic>Astrocytes</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Calcium (intracellular)</topic><topic>Calcium ions</topic><topic>Calcium Signaling</topic><topic>Calcium signalling</topic><topic>Circuits</topic><topic>Computational neuroscience</topic><topic>Intracellular signalling</topic><topic>Neural networks</topic><topic>Neurobiology</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Perspective</topic><topic>Signal Transduction</topic><topic>Synapses - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murphy-Royal, Ciaran</creatorcontrib><creatorcontrib>Ching, ShiNung</creatorcontrib><creatorcontrib>Papouin, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murphy-Royal, Ciaran</au><au>Ching, ShiNung</au><au>Papouin, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A conceptual framework for astrocyte function</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>26</volume><issue>11</issue><spage>1848</spage><epage>1856</epage><pages>1848-1856</pages><issn>1097-6256</issn><issn>1546-1726</issn><eissn>1546-1726</eissn><abstract>The participation of astrocytes in brain computation was hypothesized in 1992, coinciding with the discovery that these cells display a form of intracellular Ca 2+ signaling sensitive to neuroactive molecules. This finding fostered conceptual leaps crystalized around the idea that astrocytes, once thought to be passive, participate actively in brain signaling and outputs. A multitude of disparate roles of astrocytes has since emerged, but their meaningful integration has been muddied by the lack of consensus and models of how we conceive the functional position of these cells in brain circuitry. In this Perspective, we propose an intuitive, data-driven and transferable conceptual framework we coin ‘contextual guidance’. It describes astrocytes as ‘contextual gates’ that shape neural circuitry in an adaptive, state-dependent fashion. This paradigm provides fresh perspectives on principles of astrocyte signaling and its relevance to brain function, which could spur new experimental avenues, including in computational space. Recent progress in astrocyte biology requires a more cohesive conceptual framework. This Perspective introduces a ‘contextual guidance’ paradigm in which astrocytes are key to adaptive modeling of neural circuits in response to state changes.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>37857773</pmid><doi>10.1038/s41593-023-01448-8</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5288-1944</orcidid><orcidid>https://orcid.org/0000-0001-7545-593X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-6256
ispartof Nature neuroscience, 2023-11, Vol.26 (11), p.1848-1856
issn 1097-6256
1546-1726
1546-1726
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10990637
source Springer Nature - Connect here FIRST to enable access
subjects 631/378/116/1925
631/378/2596/1308
631/378/87
Animal Genetics and Genomics
Astrocytes
Behavioral Sciences
Biological Techniques
Biology
Biomedical and Life Sciences
Biomedicine
Brain
Calcium (intracellular)
Calcium ions
Calcium Signaling
Calcium signalling
Circuits
Computational neuroscience
Intracellular signalling
Neural networks
Neurobiology
Neurons
Neurosciences
Perspective
Signal Transduction
Synapses - metabolism
title A conceptual framework for astrocyte function
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A34%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20conceptual%20framework%20for%20astrocyte%20function&rft.jtitle=Nature%20neuroscience&rft.au=Murphy-Royal,%20Ciaran&rft.date=2023-11-01&rft.volume=26&rft.issue=11&rft.spage=1848&rft.epage=1856&rft.pages=1848-1856&rft.issn=1097-6256&rft.eissn=1546-1726&rft_id=info:doi/10.1038/s41593-023-01448-8&rft_dat=%3Cproquest_pubme%3E2880103560%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-58659129f89b355feaa1b133f71f045a813bb87421b9e1bd8ef23ad6a32f28ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2884934993&rft_id=info:pmid/37857773&rfr_iscdi=true