Loading…

Compensatory evolution in NusG improves fitness of drug-resistant M. tuberculosis

Drug-resistant bacteria are emerging as a global threat, despite frequently being less fit than their drug-susceptible ancestors 1 – 8 . Here we sought to define the mechanisms that drive or buffer the fitness cost of rifampicin resistance (RifR) in the bacterial pathogen Mycobacterium tuberculosis...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2024-04, Vol.628 (8006), p.186-194
Main Authors: Eckartt, Kathryn A., Delbeau, Madeleine, Munsamy-Govender, Vanisha, DeJesus, Michael A., Azadian, Zachary A., Reddy, Abhijna K., Chandanani, Joshua, Poulton, Nicholas C., Quiñones-Garcia, Stefany, Bosch, Barbara, Landick, Robert, Campbell, Elizabeth A., Rock, Jeremy M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3415-90129bd7b43360a355843c8705e96f9b77f16ebe640e33e71eef90b31870f3983
container_end_page 194
container_issue 8006
container_start_page 186
container_title Nature (London)
container_volume 628
creator Eckartt, Kathryn A.
Delbeau, Madeleine
Munsamy-Govender, Vanisha
DeJesus, Michael A.
Azadian, Zachary A.
Reddy, Abhijna K.
Chandanani, Joshua
Poulton, Nicholas C.
Quiñones-Garcia, Stefany
Bosch, Barbara
Landick, Robert
Campbell, Elizabeth A.
Rock, Jeremy M.
description Drug-resistant bacteria are emerging as a global threat, despite frequently being less fit than their drug-susceptible ancestors 1 – 8 . Here we sought to define the mechanisms that drive or buffer the fitness cost of rifampicin resistance (RifR) in the bacterial pathogen Mycobacterium tuberculosis (Mtb). Rifampicin inhibits RNA polymerase (RNAP) and is a cornerstone of modern short-course tuberculosis therapy 9 , 10 . However, RifR Mtb accounts for one-quarter of all deaths due to drug-resistant bacteria 11 , 12 . We took a comparative functional genomics approach to define processes that are differentially vulnerable to CRISPR interference (CRISPRi) inhibition in RifR Mtb. Among other hits, we found that the universally conserved transcription factor NusG is crucial for the fitness of RifR Mtb. In contrast to its role in Escherichia coli , Mtb NusG has an essential RNAP pro-pausing function mediated by distinct contacts with RNAP and the DNA 13 . We find this pro-pausing NusG–RNAP interface to be under positive selection in clinical RifR Mtb isolates. Mutations in the NusG–RNAP interface reduce pro-pausing activity and increase fitness of RifR Mtb. Collectively, these results define excessive RNAP pausing as a molecular mechanism that drives the fitness cost of RifR in Mtb, identify a new mechanism of compensation to overcome this cost, suggest rational approaches to exacerbate the fitness cost, and, more broadly, could inform new therapeutic approaches to develop drug combinations to slow the evolution of RifR in Mtb. In Mycobacterium tuberculosis , the fitness cost of rifampicin resistance is partially due to excessive RNA polymerase pausing and is rescued by mutations in the pro-pausing transcription factor NusG.
doi_str_mv 10.1038/s41586-024-07206-5
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10990936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2973101733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3415-90129bd7b43360a355843c8705e96f9b77f16ebe640e33e71eef90b31870f3983</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EotvCH-CALHHhkjLOOP44IbSCFqkfQoKzlWQni6vEXuxkpf57XLYU6IHTSDPPvDOvXsZeCTgVgOZdlqIxqoJaVqBrUFXzhK2E1KqSyuinbAVQmwoMqiN2nPMNADRCy-fsCE0DFlW9Yl_WcdpRyO0c0y2nfRyX2cfAfeBXSz7jftqluKfMBz8HypnHgW_Ssq0SZZ_nNsz88pTPS0epX8ZYei_Ys6EdM728ryfs26ePX9fn1cX12ef1h4uqx_J3ZUHUttvoTiIqaLFpjMTeaGjIqsF2Wg9CUUdKAiGSFkSDhQ5FQQa0Bk_Y-4Pubukm2vQU5tSObpf81KZbF1vv_p0E_91t494JsPbOfVF4e6-Q4o-F8uwmn3saxzZQXLKrrUYBQiMW9M0j9CYuKRR_DgGltAhaF6o-UH2KOScaHr4R4O4ic4fIXInM_YrMNWXp9d8-HlZ-Z1QAPAC5jMKW0p_b_5H9CWTgobc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3034493077</pqid></control><display><type>article</type><title>Compensatory evolution in NusG improves fitness of drug-resistant M. tuberculosis</title><source>Springer Nature - Connect here FIRST to enable access</source><creator>Eckartt, Kathryn A. ; Delbeau, Madeleine ; Munsamy-Govender, Vanisha ; DeJesus, Michael A. ; Azadian, Zachary A. ; Reddy, Abhijna K. ; Chandanani, Joshua ; Poulton, Nicholas C. ; Quiñones-Garcia, Stefany ; Bosch, Barbara ; Landick, Robert ; Campbell, Elizabeth A. ; Rock, Jeremy M.</creator><creatorcontrib>Eckartt, Kathryn A. ; Delbeau, Madeleine ; Munsamy-Govender, Vanisha ; DeJesus, Michael A. ; Azadian, Zachary A. ; Reddy, Abhijna K. ; Chandanani, Joshua ; Poulton, Nicholas C. ; Quiñones-Garcia, Stefany ; Bosch, Barbara ; Landick, Robert ; Campbell, Elizabeth A. ; Rock, Jeremy M.</creatorcontrib><description>Drug-resistant bacteria are emerging as a global threat, despite frequently being less fit than their drug-susceptible ancestors 1 – 8 . Here we sought to define the mechanisms that drive or buffer the fitness cost of rifampicin resistance (RifR) in the bacterial pathogen Mycobacterium tuberculosis (Mtb). Rifampicin inhibits RNA polymerase (RNAP) and is a cornerstone of modern short-course tuberculosis therapy 9 , 10 . However, RifR Mtb accounts for one-quarter of all deaths due to drug-resistant bacteria 11 , 12 . We took a comparative functional genomics approach to define processes that are differentially vulnerable to CRISPR interference (CRISPRi) inhibition in RifR Mtb. Among other hits, we found that the universally conserved transcription factor NusG is crucial for the fitness of RifR Mtb. In contrast to its role in Escherichia coli , Mtb NusG has an essential RNAP pro-pausing function mediated by distinct contacts with RNAP and the DNA 13 . We find this pro-pausing NusG–RNAP interface to be under positive selection in clinical RifR Mtb isolates. Mutations in the NusG–RNAP interface reduce pro-pausing activity and increase fitness of RifR Mtb. Collectively, these results define excessive RNAP pausing as a molecular mechanism that drives the fitness cost of RifR in Mtb, identify a new mechanism of compensation to overcome this cost, suggest rational approaches to exacerbate the fitness cost, and, more broadly, could inform new therapeutic approaches to develop drug combinations to slow the evolution of RifR in Mtb. In Mycobacterium tuberculosis , the fitness cost of rifampicin resistance is partially due to excessive RNA polymerase pausing and is rescued by mutations in the pro-pausing transcription factor NusG.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07206-5</identifier><identifier>PMID: 38509362</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/43 ; 631/326/325/2482 ; 631/326/41/2531 ; 631/326/421 ; Antimicrobial agents ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Conserved Sequence ; CRISPR ; DNA-directed RNA polymerase ; DNA-Directed RNA Polymerases - antagonists &amp; inhibitors ; DNA-Directed RNA Polymerases - genetics ; DNA-Directed RNA Polymerases - metabolism ; Drug resistance ; Drug Resistance, Bacterial - drug effects ; Drug Resistance, Bacterial - genetics ; E coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Evolution ; Evolution, Molecular ; Fitness ; Genes ; Genetic Fitness ; Genomes ; Genomics ; Humanities and Social Sciences ; Humans ; Molecular modelling ; multidisciplinary ; Mutation ; Mycobacterium tuberculosis - drug effects ; Mycobacterium tuberculosis - enzymology ; Mycobacterium tuberculosis - genetics ; Mycobacterium tuberculosis - metabolism ; Pathogens ; Peptide Elongation Factors - genetics ; Peptide Elongation Factors - metabolism ; Physiology ; Positive selection ; Rifampin ; Rifampin - pharmacology ; Rifampin - therapeutic use ; RNA polymerase ; Science ; Science (multidisciplinary) ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Tuberculosis ; Tuberculosis, Multidrug-Resistant - drug therapy ; Tuberculosis, Multidrug-Resistant - microbiology</subject><ispartof>Nature (London), 2024-04, Vol.628 (8006), p.186-194</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group Apr 4, 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3415-90129bd7b43360a355843c8705e96f9b77f16ebe640e33e71eef90b31870f3983</cites><orcidid>0000-0002-1332-128X ; 0000-0003-2671-2412 ; 0000-0003-3867-0299 ; 0000-0002-5042-0383 ; 0000-0002-9310-951X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38509362$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eckartt, Kathryn A.</creatorcontrib><creatorcontrib>Delbeau, Madeleine</creatorcontrib><creatorcontrib>Munsamy-Govender, Vanisha</creatorcontrib><creatorcontrib>DeJesus, Michael A.</creatorcontrib><creatorcontrib>Azadian, Zachary A.</creatorcontrib><creatorcontrib>Reddy, Abhijna K.</creatorcontrib><creatorcontrib>Chandanani, Joshua</creatorcontrib><creatorcontrib>Poulton, Nicholas C.</creatorcontrib><creatorcontrib>Quiñones-Garcia, Stefany</creatorcontrib><creatorcontrib>Bosch, Barbara</creatorcontrib><creatorcontrib>Landick, Robert</creatorcontrib><creatorcontrib>Campbell, Elizabeth A.</creatorcontrib><creatorcontrib>Rock, Jeremy M.</creatorcontrib><title>Compensatory evolution in NusG improves fitness of drug-resistant M. tuberculosis</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Drug-resistant bacteria are emerging as a global threat, despite frequently being less fit than their drug-susceptible ancestors 1 – 8 . Here we sought to define the mechanisms that drive or buffer the fitness cost of rifampicin resistance (RifR) in the bacterial pathogen Mycobacterium tuberculosis (Mtb). Rifampicin inhibits RNA polymerase (RNAP) and is a cornerstone of modern short-course tuberculosis therapy 9 , 10 . However, RifR Mtb accounts for one-quarter of all deaths due to drug-resistant bacteria 11 , 12 . We took a comparative functional genomics approach to define processes that are differentially vulnerable to CRISPR interference (CRISPRi) inhibition in RifR Mtb. Among other hits, we found that the universally conserved transcription factor NusG is crucial for the fitness of RifR Mtb. In contrast to its role in Escherichia coli , Mtb NusG has an essential RNAP pro-pausing function mediated by distinct contacts with RNAP and the DNA 13 . We find this pro-pausing NusG–RNAP interface to be under positive selection in clinical RifR Mtb isolates. Mutations in the NusG–RNAP interface reduce pro-pausing activity and increase fitness of RifR Mtb. Collectively, these results define excessive RNAP pausing as a molecular mechanism that drives the fitness cost of RifR in Mtb, identify a new mechanism of compensation to overcome this cost, suggest rational approaches to exacerbate the fitness cost, and, more broadly, could inform new therapeutic approaches to develop drug combinations to slow the evolution of RifR in Mtb. In Mycobacterium tuberculosis , the fitness cost of rifampicin resistance is partially due to excessive RNA polymerase pausing and is rescued by mutations in the pro-pausing transcription factor NusG.</description><subject>38/43</subject><subject>631/326/325/2482</subject><subject>631/326/41/2531</subject><subject>631/326/421</subject><subject>Antimicrobial agents</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Conserved Sequence</subject><subject>CRISPR</subject><subject>DNA-directed RNA polymerase</subject><subject>DNA-Directed RNA Polymerases - antagonists &amp; inhibitors</subject><subject>DNA-Directed RNA Polymerases - genetics</subject><subject>DNA-Directed RNA Polymerases - metabolism</subject><subject>Drug resistance</subject><subject>Drug Resistance, Bacterial - drug effects</subject><subject>Drug Resistance, Bacterial - genetics</subject><subject>E coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Fitness</subject><subject>Genes</subject><subject>Genetic Fitness</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Molecular modelling</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Mycobacterium tuberculosis - drug effects</subject><subject>Mycobacterium tuberculosis - enzymology</subject><subject>Mycobacterium tuberculosis - genetics</subject><subject>Mycobacterium tuberculosis - metabolism</subject><subject>Pathogens</subject><subject>Peptide Elongation Factors - genetics</subject><subject>Peptide Elongation Factors - metabolism</subject><subject>Physiology</subject><subject>Positive selection</subject><subject>Rifampin</subject><subject>Rifampin - pharmacology</subject><subject>Rifampin - therapeutic use</subject><subject>RNA polymerase</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Tuberculosis</subject><subject>Tuberculosis, Multidrug-Resistant - drug therapy</subject><subject>Tuberculosis, Multidrug-Resistant - microbiology</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi0EotvCH-CALHHhkjLOOP44IbSCFqkfQoKzlWQni6vEXuxkpf57XLYU6IHTSDPPvDOvXsZeCTgVgOZdlqIxqoJaVqBrUFXzhK2E1KqSyuinbAVQmwoMqiN2nPMNADRCy-fsCE0DFlW9Yl_WcdpRyO0c0y2nfRyX2cfAfeBXSz7jftqluKfMBz8HypnHgW_Ssq0SZZ_nNsz88pTPS0epX8ZYei_Ys6EdM728ryfs26ePX9fn1cX12ef1h4uqx_J3ZUHUttvoTiIqaLFpjMTeaGjIqsF2Wg9CUUdKAiGSFkSDhQ5FQQa0Bk_Y-4Pubukm2vQU5tSObpf81KZbF1vv_p0E_91t494JsPbOfVF4e6-Q4o-F8uwmn3saxzZQXLKrrUYBQiMW9M0j9CYuKRR_DgGltAhaF6o-UH2KOScaHr4R4O4ic4fIXInM_YrMNWXp9d8-HlZ-Z1QAPAC5jMKW0p_b_5H9CWTgobc</recordid><startdate>20240404</startdate><enddate>20240404</enddate><creator>Eckartt, Kathryn A.</creator><creator>Delbeau, Madeleine</creator><creator>Munsamy-Govender, Vanisha</creator><creator>DeJesus, Michael A.</creator><creator>Azadian, Zachary A.</creator><creator>Reddy, Abhijna K.</creator><creator>Chandanani, Joshua</creator><creator>Poulton, Nicholas C.</creator><creator>Quiñones-Garcia, Stefany</creator><creator>Bosch, Barbara</creator><creator>Landick, Robert</creator><creator>Campbell, Elizabeth A.</creator><creator>Rock, Jeremy M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1332-128X</orcidid><orcidid>https://orcid.org/0000-0003-2671-2412</orcidid><orcidid>https://orcid.org/0000-0003-3867-0299</orcidid><orcidid>https://orcid.org/0000-0002-5042-0383</orcidid><orcidid>https://orcid.org/0000-0002-9310-951X</orcidid></search><sort><creationdate>20240404</creationdate><title>Compensatory evolution in NusG improves fitness of drug-resistant M. tuberculosis</title><author>Eckartt, Kathryn A. ; Delbeau, Madeleine ; Munsamy-Govender, Vanisha ; DeJesus, Michael A. ; Azadian, Zachary A. ; Reddy, Abhijna K. ; Chandanani, Joshua ; Poulton, Nicholas C. ; Quiñones-Garcia, Stefany ; Bosch, Barbara ; Landick, Robert ; Campbell, Elizabeth A. ; Rock, Jeremy M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3415-90129bd7b43360a355843c8705e96f9b77f16ebe640e33e71eef90b31870f3983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>38/43</topic><topic>631/326/325/2482</topic><topic>631/326/41/2531</topic><topic>631/326/421</topic><topic>Antimicrobial agents</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Conserved Sequence</topic><topic>CRISPR</topic><topic>DNA-directed RNA polymerase</topic><topic>DNA-Directed RNA Polymerases - antagonists &amp; inhibitors</topic><topic>DNA-Directed RNA Polymerases - genetics</topic><topic>DNA-Directed RNA Polymerases - metabolism</topic><topic>Drug resistance</topic><topic>Drug Resistance, Bacterial - drug effects</topic><topic>Drug Resistance, Bacterial - genetics</topic><topic>E coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Fitness</topic><topic>Genes</topic><topic>Genetic Fitness</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Molecular modelling</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Mycobacterium tuberculosis - drug effects</topic><topic>Mycobacterium tuberculosis - enzymology</topic><topic>Mycobacterium tuberculosis - genetics</topic><topic>Mycobacterium tuberculosis - metabolism</topic><topic>Pathogens</topic><topic>Peptide Elongation Factors - genetics</topic><topic>Peptide Elongation Factors - metabolism</topic><topic>Physiology</topic><topic>Positive selection</topic><topic>Rifampin</topic><topic>Rifampin - pharmacology</topic><topic>Rifampin - therapeutic use</topic><topic>RNA polymerase</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Tuberculosis</topic><topic>Tuberculosis, Multidrug-Resistant - drug therapy</topic><topic>Tuberculosis, Multidrug-Resistant - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eckartt, Kathryn A.</creatorcontrib><creatorcontrib>Delbeau, Madeleine</creatorcontrib><creatorcontrib>Munsamy-Govender, Vanisha</creatorcontrib><creatorcontrib>DeJesus, Michael A.</creatorcontrib><creatorcontrib>Azadian, Zachary A.</creatorcontrib><creatorcontrib>Reddy, Abhijna K.</creatorcontrib><creatorcontrib>Chandanani, Joshua</creatorcontrib><creatorcontrib>Poulton, Nicholas C.</creatorcontrib><creatorcontrib>Quiñones-Garcia, Stefany</creatorcontrib><creatorcontrib>Bosch, Barbara</creatorcontrib><creatorcontrib>Landick, Robert</creatorcontrib><creatorcontrib>Campbell, Elizabeth A.</creatorcontrib><creatorcontrib>Rock, Jeremy M.</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eckartt, Kathryn A.</au><au>Delbeau, Madeleine</au><au>Munsamy-Govender, Vanisha</au><au>DeJesus, Michael A.</au><au>Azadian, Zachary A.</au><au>Reddy, Abhijna K.</au><au>Chandanani, Joshua</au><au>Poulton, Nicholas C.</au><au>Quiñones-Garcia, Stefany</au><au>Bosch, Barbara</au><au>Landick, Robert</au><au>Campbell, Elizabeth A.</au><au>Rock, Jeremy M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compensatory evolution in NusG improves fitness of drug-resistant M. tuberculosis</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-04-04</date><risdate>2024</risdate><volume>628</volume><issue>8006</issue><spage>186</spage><epage>194</epage><pages>186-194</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Drug-resistant bacteria are emerging as a global threat, despite frequently being less fit than their drug-susceptible ancestors 1 – 8 . Here we sought to define the mechanisms that drive or buffer the fitness cost of rifampicin resistance (RifR) in the bacterial pathogen Mycobacterium tuberculosis (Mtb). Rifampicin inhibits RNA polymerase (RNAP) and is a cornerstone of modern short-course tuberculosis therapy 9 , 10 . However, RifR Mtb accounts for one-quarter of all deaths due to drug-resistant bacteria 11 , 12 . We took a comparative functional genomics approach to define processes that are differentially vulnerable to CRISPR interference (CRISPRi) inhibition in RifR Mtb. Among other hits, we found that the universally conserved transcription factor NusG is crucial for the fitness of RifR Mtb. In contrast to its role in Escherichia coli , Mtb NusG has an essential RNAP pro-pausing function mediated by distinct contacts with RNAP and the DNA 13 . We find this pro-pausing NusG–RNAP interface to be under positive selection in clinical RifR Mtb isolates. Mutations in the NusG–RNAP interface reduce pro-pausing activity and increase fitness of RifR Mtb. Collectively, these results define excessive RNAP pausing as a molecular mechanism that drives the fitness cost of RifR in Mtb, identify a new mechanism of compensation to overcome this cost, suggest rational approaches to exacerbate the fitness cost, and, more broadly, could inform new therapeutic approaches to develop drug combinations to slow the evolution of RifR in Mtb. In Mycobacterium tuberculosis , the fitness cost of rifampicin resistance is partially due to excessive RNA polymerase pausing and is rescued by mutations in the pro-pausing transcription factor NusG.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38509362</pmid><doi>10.1038/s41586-024-07206-5</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1332-128X</orcidid><orcidid>https://orcid.org/0000-0003-2671-2412</orcidid><orcidid>https://orcid.org/0000-0003-3867-0299</orcidid><orcidid>https://orcid.org/0000-0002-5042-0383</orcidid><orcidid>https://orcid.org/0000-0002-9310-951X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2024-04, Vol.628 (8006), p.186-194
issn 0028-0836
1476-4687
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10990936
source Springer Nature - Connect here FIRST to enable access
subjects 38/43
631/326/325/2482
631/326/41/2531
631/326/421
Antimicrobial agents
Bacteria
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Conserved Sequence
CRISPR
DNA-directed RNA polymerase
DNA-Directed RNA Polymerases - antagonists & inhibitors
DNA-Directed RNA Polymerases - genetics
DNA-Directed RNA Polymerases - metabolism
Drug resistance
Drug Resistance, Bacterial - drug effects
Drug Resistance, Bacterial - genetics
E coli
Escherichia coli - genetics
Escherichia coli - metabolism
Evolution
Evolution, Molecular
Fitness
Genes
Genetic Fitness
Genomes
Genomics
Humanities and Social Sciences
Humans
Molecular modelling
multidisciplinary
Mutation
Mycobacterium tuberculosis - drug effects
Mycobacterium tuberculosis - enzymology
Mycobacterium tuberculosis - genetics
Mycobacterium tuberculosis - metabolism
Pathogens
Peptide Elongation Factors - genetics
Peptide Elongation Factors - metabolism
Physiology
Positive selection
Rifampin
Rifampin - pharmacology
Rifampin - therapeutic use
RNA polymerase
Science
Science (multidisciplinary)
Transcription factors
Transcription Factors - genetics
Transcription Factors - metabolism
Tuberculosis
Tuberculosis, Multidrug-Resistant - drug therapy
Tuberculosis, Multidrug-Resistant - microbiology
title Compensatory evolution in NusG improves fitness of drug-resistant M. tuberculosis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A59%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compensatory%20evolution%20in%20NusG%20improves%20fitness%20of%20drug-resistant%20M.%20tuberculosis&rft.jtitle=Nature%20(London)&rft.au=Eckartt,%20Kathryn%20A.&rft.date=2024-04-04&rft.volume=628&rft.issue=8006&rft.spage=186&rft.epage=194&rft.pages=186-194&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07206-5&rft_dat=%3Cproquest_pubme%3E2973101733%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3415-90129bd7b43360a355843c8705e96f9b77f16ebe640e33e71eef90b31870f3983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3034493077&rft_id=info:pmid/38509362&rfr_iscdi=true