Loading…
Compensatory evolution in NusG improves fitness of drug-resistant M. tuberculosis
Drug-resistant bacteria are emerging as a global threat, despite frequently being less fit than their drug-susceptible ancestors 1 – 8 . Here we sought to define the mechanisms that drive or buffer the fitness cost of rifampicin resistance (RifR) in the bacterial pathogen Mycobacterium tuberculosis...
Saved in:
Published in: | Nature (London) 2024-04, Vol.628 (8006), p.186-194 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3415-90129bd7b43360a355843c8705e96f9b77f16ebe640e33e71eef90b31870f3983 |
container_end_page | 194 |
container_issue | 8006 |
container_start_page | 186 |
container_title | Nature (London) |
container_volume | 628 |
creator | Eckartt, Kathryn A. Delbeau, Madeleine Munsamy-Govender, Vanisha DeJesus, Michael A. Azadian, Zachary A. Reddy, Abhijna K. Chandanani, Joshua Poulton, Nicholas C. Quiñones-Garcia, Stefany Bosch, Barbara Landick, Robert Campbell, Elizabeth A. Rock, Jeremy M. |
description | Drug-resistant bacteria are emerging as a global threat, despite frequently being less fit than their drug-susceptible ancestors
1
–
8
. Here we sought to define the mechanisms that drive or buffer the fitness cost of rifampicin resistance (RifR) in the bacterial pathogen
Mycobacterium tuberculosis
(Mtb). Rifampicin inhibits RNA polymerase (RNAP) and is a cornerstone of modern short-course tuberculosis therapy
9
,
10
. However, RifR Mtb accounts for one-quarter of all deaths due to drug-resistant bacteria
11
,
12
. We took a comparative functional genomics approach to define processes that are differentially vulnerable to CRISPR interference (CRISPRi) inhibition in RifR Mtb. Among other hits, we found that the universally conserved transcription factor NusG is crucial for the fitness of RifR Mtb. In contrast to its role in
Escherichia coli
, Mtb NusG has an essential RNAP pro-pausing function mediated by distinct contacts with RNAP and the DNA
13
. We find this pro-pausing NusG–RNAP interface to be under positive selection in clinical RifR Mtb isolates. Mutations in the NusG–RNAP interface reduce pro-pausing activity and increase fitness of RifR Mtb. Collectively, these results define excessive RNAP pausing as a molecular mechanism that drives the fitness cost of RifR in Mtb, identify a new mechanism of compensation to overcome this cost, suggest rational approaches to exacerbate the fitness cost, and, more broadly, could inform new therapeutic approaches to develop drug combinations to slow the evolution of RifR in Mtb.
In
Mycobacterium tuberculosis
, the fitness cost of rifampicin resistance is partially due to excessive RNA polymerase pausing and is rescued by mutations in the pro-pausing transcription factor NusG. |
doi_str_mv | 10.1038/s41586-024-07206-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10990936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2973101733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3415-90129bd7b43360a355843c8705e96f9b77f16ebe640e33e71eef90b31870f3983</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EotvCH-CALHHhkjLOOP44IbSCFqkfQoKzlWQni6vEXuxkpf57XLYU6IHTSDPPvDOvXsZeCTgVgOZdlqIxqoJaVqBrUFXzhK2E1KqSyuinbAVQmwoMqiN2nPMNADRCy-fsCE0DFlW9Yl_WcdpRyO0c0y2nfRyX2cfAfeBXSz7jftqluKfMBz8HypnHgW_Ssq0SZZ_nNsz88pTPS0epX8ZYei_Ys6EdM728ryfs26ePX9fn1cX12ef1h4uqx_J3ZUHUttvoTiIqaLFpjMTeaGjIqsF2Wg9CUUdKAiGSFkSDhQ5FQQa0Bk_Y-4Pubukm2vQU5tSObpf81KZbF1vv_p0E_91t494JsPbOfVF4e6-Q4o-F8uwmn3saxzZQXLKrrUYBQiMW9M0j9CYuKRR_DgGltAhaF6o-UH2KOScaHr4R4O4ic4fIXInM_YrMNWXp9d8-HlZ-Z1QAPAC5jMKW0p_b_5H9CWTgobc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3034493077</pqid></control><display><type>article</type><title>Compensatory evolution in NusG improves fitness of drug-resistant M. tuberculosis</title><source>Springer Nature - Connect here FIRST to enable access</source><creator>Eckartt, Kathryn A. ; Delbeau, Madeleine ; Munsamy-Govender, Vanisha ; DeJesus, Michael A. ; Azadian, Zachary A. ; Reddy, Abhijna K. ; Chandanani, Joshua ; Poulton, Nicholas C. ; Quiñones-Garcia, Stefany ; Bosch, Barbara ; Landick, Robert ; Campbell, Elizabeth A. ; Rock, Jeremy M.</creator><creatorcontrib>Eckartt, Kathryn A. ; Delbeau, Madeleine ; Munsamy-Govender, Vanisha ; DeJesus, Michael A. ; Azadian, Zachary A. ; Reddy, Abhijna K. ; Chandanani, Joshua ; Poulton, Nicholas C. ; Quiñones-Garcia, Stefany ; Bosch, Barbara ; Landick, Robert ; Campbell, Elizabeth A. ; Rock, Jeremy M.</creatorcontrib><description>Drug-resistant bacteria are emerging as a global threat, despite frequently being less fit than their drug-susceptible ancestors
1
–
8
. Here we sought to define the mechanisms that drive or buffer the fitness cost of rifampicin resistance (RifR) in the bacterial pathogen
Mycobacterium tuberculosis
(Mtb). Rifampicin inhibits RNA polymerase (RNAP) and is a cornerstone of modern short-course tuberculosis therapy
9
,
10
. However, RifR Mtb accounts for one-quarter of all deaths due to drug-resistant bacteria
11
,
12
. We took a comparative functional genomics approach to define processes that are differentially vulnerable to CRISPR interference (CRISPRi) inhibition in RifR Mtb. Among other hits, we found that the universally conserved transcription factor NusG is crucial for the fitness of RifR Mtb. In contrast to its role in
Escherichia coli
, Mtb NusG has an essential RNAP pro-pausing function mediated by distinct contacts with RNAP and the DNA
13
. We find this pro-pausing NusG–RNAP interface to be under positive selection in clinical RifR Mtb isolates. Mutations in the NusG–RNAP interface reduce pro-pausing activity and increase fitness of RifR Mtb. Collectively, these results define excessive RNAP pausing as a molecular mechanism that drives the fitness cost of RifR in Mtb, identify a new mechanism of compensation to overcome this cost, suggest rational approaches to exacerbate the fitness cost, and, more broadly, could inform new therapeutic approaches to develop drug combinations to slow the evolution of RifR in Mtb.
In
Mycobacterium tuberculosis
, the fitness cost of rifampicin resistance is partially due to excessive RNA polymerase pausing and is rescued by mutations in the pro-pausing transcription factor NusG.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07206-5</identifier><identifier>PMID: 38509362</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/43 ; 631/326/325/2482 ; 631/326/41/2531 ; 631/326/421 ; Antimicrobial agents ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Conserved Sequence ; CRISPR ; DNA-directed RNA polymerase ; DNA-Directed RNA Polymerases - antagonists & inhibitors ; DNA-Directed RNA Polymerases - genetics ; DNA-Directed RNA Polymerases - metabolism ; Drug resistance ; Drug Resistance, Bacterial - drug effects ; Drug Resistance, Bacterial - genetics ; E coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Evolution ; Evolution, Molecular ; Fitness ; Genes ; Genetic Fitness ; Genomes ; Genomics ; Humanities and Social Sciences ; Humans ; Molecular modelling ; multidisciplinary ; Mutation ; Mycobacterium tuberculosis - drug effects ; Mycobacterium tuberculosis - enzymology ; Mycobacterium tuberculosis - genetics ; Mycobacterium tuberculosis - metabolism ; Pathogens ; Peptide Elongation Factors - genetics ; Peptide Elongation Factors - metabolism ; Physiology ; Positive selection ; Rifampin ; Rifampin - pharmacology ; Rifampin - therapeutic use ; RNA polymerase ; Science ; Science (multidisciplinary) ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Tuberculosis ; Tuberculosis, Multidrug-Resistant - drug therapy ; Tuberculosis, Multidrug-Resistant - microbiology</subject><ispartof>Nature (London), 2024-04, Vol.628 (8006), p.186-194</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group Apr 4, 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3415-90129bd7b43360a355843c8705e96f9b77f16ebe640e33e71eef90b31870f3983</cites><orcidid>0000-0002-1332-128X ; 0000-0003-2671-2412 ; 0000-0003-3867-0299 ; 0000-0002-5042-0383 ; 0000-0002-9310-951X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38509362$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eckartt, Kathryn A.</creatorcontrib><creatorcontrib>Delbeau, Madeleine</creatorcontrib><creatorcontrib>Munsamy-Govender, Vanisha</creatorcontrib><creatorcontrib>DeJesus, Michael A.</creatorcontrib><creatorcontrib>Azadian, Zachary A.</creatorcontrib><creatorcontrib>Reddy, Abhijna K.</creatorcontrib><creatorcontrib>Chandanani, Joshua</creatorcontrib><creatorcontrib>Poulton, Nicholas C.</creatorcontrib><creatorcontrib>Quiñones-Garcia, Stefany</creatorcontrib><creatorcontrib>Bosch, Barbara</creatorcontrib><creatorcontrib>Landick, Robert</creatorcontrib><creatorcontrib>Campbell, Elizabeth A.</creatorcontrib><creatorcontrib>Rock, Jeremy M.</creatorcontrib><title>Compensatory evolution in NusG improves fitness of drug-resistant M. tuberculosis</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Drug-resistant bacteria are emerging as a global threat, despite frequently being less fit than their drug-susceptible ancestors
1
–
8
. Here we sought to define the mechanisms that drive or buffer the fitness cost of rifampicin resistance (RifR) in the bacterial pathogen
Mycobacterium tuberculosis
(Mtb). Rifampicin inhibits RNA polymerase (RNAP) and is a cornerstone of modern short-course tuberculosis therapy
9
,
10
. However, RifR Mtb accounts for one-quarter of all deaths due to drug-resistant bacteria
11
,
12
. We took a comparative functional genomics approach to define processes that are differentially vulnerable to CRISPR interference (CRISPRi) inhibition in RifR Mtb. Among other hits, we found that the universally conserved transcription factor NusG is crucial for the fitness of RifR Mtb. In contrast to its role in
Escherichia coli
, Mtb NusG has an essential RNAP pro-pausing function mediated by distinct contacts with RNAP and the DNA
13
. We find this pro-pausing NusG–RNAP interface to be under positive selection in clinical RifR Mtb isolates. Mutations in the NusG–RNAP interface reduce pro-pausing activity and increase fitness of RifR Mtb. Collectively, these results define excessive RNAP pausing as a molecular mechanism that drives the fitness cost of RifR in Mtb, identify a new mechanism of compensation to overcome this cost, suggest rational approaches to exacerbate the fitness cost, and, more broadly, could inform new therapeutic approaches to develop drug combinations to slow the evolution of RifR in Mtb.
In
Mycobacterium tuberculosis
, the fitness cost of rifampicin resistance is partially due to excessive RNA polymerase pausing and is rescued by mutations in the pro-pausing transcription factor NusG.</description><subject>38/43</subject><subject>631/326/325/2482</subject><subject>631/326/41/2531</subject><subject>631/326/421</subject><subject>Antimicrobial agents</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Conserved Sequence</subject><subject>CRISPR</subject><subject>DNA-directed RNA polymerase</subject><subject>DNA-Directed RNA Polymerases - antagonists & inhibitors</subject><subject>DNA-Directed RNA Polymerases - genetics</subject><subject>DNA-Directed RNA Polymerases - metabolism</subject><subject>Drug resistance</subject><subject>Drug Resistance, Bacterial - drug effects</subject><subject>Drug Resistance, Bacterial - genetics</subject><subject>E coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Fitness</subject><subject>Genes</subject><subject>Genetic Fitness</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Molecular modelling</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Mycobacterium tuberculosis - drug effects</subject><subject>Mycobacterium tuberculosis - enzymology</subject><subject>Mycobacterium tuberculosis - genetics</subject><subject>Mycobacterium tuberculosis - metabolism</subject><subject>Pathogens</subject><subject>Peptide Elongation Factors - genetics</subject><subject>Peptide Elongation Factors - metabolism</subject><subject>Physiology</subject><subject>Positive selection</subject><subject>Rifampin</subject><subject>Rifampin - pharmacology</subject><subject>Rifampin - therapeutic use</subject><subject>RNA polymerase</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Tuberculosis</subject><subject>Tuberculosis, Multidrug-Resistant - drug therapy</subject><subject>Tuberculosis, Multidrug-Resistant - microbiology</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi0EotvCH-CALHHhkjLOOP44IbSCFqkfQoKzlWQni6vEXuxkpf57XLYU6IHTSDPPvDOvXsZeCTgVgOZdlqIxqoJaVqBrUFXzhK2E1KqSyuinbAVQmwoMqiN2nPMNADRCy-fsCE0DFlW9Yl_WcdpRyO0c0y2nfRyX2cfAfeBXSz7jftqluKfMBz8HypnHgW_Ssq0SZZ_nNsz88pTPS0epX8ZYei_Ys6EdM728ryfs26ePX9fn1cX12ef1h4uqx_J3ZUHUttvoTiIqaLFpjMTeaGjIqsF2Wg9CUUdKAiGSFkSDhQ5FQQa0Bk_Y-4Pubukm2vQU5tSObpf81KZbF1vv_p0E_91t494JsPbOfVF4e6-Q4o-F8uwmn3saxzZQXLKrrUYBQiMW9M0j9CYuKRR_DgGltAhaF6o-UH2KOScaHr4R4O4ic4fIXInM_YrMNWXp9d8-HlZ-Z1QAPAC5jMKW0p_b_5H9CWTgobc</recordid><startdate>20240404</startdate><enddate>20240404</enddate><creator>Eckartt, Kathryn A.</creator><creator>Delbeau, Madeleine</creator><creator>Munsamy-Govender, Vanisha</creator><creator>DeJesus, Michael A.</creator><creator>Azadian, Zachary A.</creator><creator>Reddy, Abhijna K.</creator><creator>Chandanani, Joshua</creator><creator>Poulton, Nicholas C.</creator><creator>Quiñones-Garcia, Stefany</creator><creator>Bosch, Barbara</creator><creator>Landick, Robert</creator><creator>Campbell, Elizabeth A.</creator><creator>Rock, Jeremy M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1332-128X</orcidid><orcidid>https://orcid.org/0000-0003-2671-2412</orcidid><orcidid>https://orcid.org/0000-0003-3867-0299</orcidid><orcidid>https://orcid.org/0000-0002-5042-0383</orcidid><orcidid>https://orcid.org/0000-0002-9310-951X</orcidid></search><sort><creationdate>20240404</creationdate><title>Compensatory evolution in NusG improves fitness of drug-resistant M. tuberculosis</title><author>Eckartt, Kathryn A. ; Delbeau, Madeleine ; Munsamy-Govender, Vanisha ; DeJesus, Michael A. ; Azadian, Zachary A. ; Reddy, Abhijna K. ; Chandanani, Joshua ; Poulton, Nicholas C. ; Quiñones-Garcia, Stefany ; Bosch, Barbara ; Landick, Robert ; Campbell, Elizabeth A. ; Rock, Jeremy M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3415-90129bd7b43360a355843c8705e96f9b77f16ebe640e33e71eef90b31870f3983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>38/43</topic><topic>631/326/325/2482</topic><topic>631/326/41/2531</topic><topic>631/326/421</topic><topic>Antimicrobial agents</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Conserved Sequence</topic><topic>CRISPR</topic><topic>DNA-directed RNA polymerase</topic><topic>DNA-Directed RNA Polymerases - antagonists & inhibitors</topic><topic>DNA-Directed RNA Polymerases - genetics</topic><topic>DNA-Directed RNA Polymerases - metabolism</topic><topic>Drug resistance</topic><topic>Drug Resistance, Bacterial - drug effects</topic><topic>Drug Resistance, Bacterial - genetics</topic><topic>E coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Fitness</topic><topic>Genes</topic><topic>Genetic Fitness</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Molecular modelling</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Mycobacterium tuberculosis - drug effects</topic><topic>Mycobacterium tuberculosis - enzymology</topic><topic>Mycobacterium tuberculosis - genetics</topic><topic>Mycobacterium tuberculosis - metabolism</topic><topic>Pathogens</topic><topic>Peptide Elongation Factors - genetics</topic><topic>Peptide Elongation Factors - metabolism</topic><topic>Physiology</topic><topic>Positive selection</topic><topic>Rifampin</topic><topic>Rifampin - pharmacology</topic><topic>Rifampin - therapeutic use</topic><topic>RNA polymerase</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Tuberculosis</topic><topic>Tuberculosis, Multidrug-Resistant - drug therapy</topic><topic>Tuberculosis, Multidrug-Resistant - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eckartt, Kathryn A.</creatorcontrib><creatorcontrib>Delbeau, Madeleine</creatorcontrib><creatorcontrib>Munsamy-Govender, Vanisha</creatorcontrib><creatorcontrib>DeJesus, Michael A.</creatorcontrib><creatorcontrib>Azadian, Zachary A.</creatorcontrib><creatorcontrib>Reddy, Abhijna K.</creatorcontrib><creatorcontrib>Chandanani, Joshua</creatorcontrib><creatorcontrib>Poulton, Nicholas C.</creatorcontrib><creatorcontrib>Quiñones-Garcia, Stefany</creatorcontrib><creatorcontrib>Bosch, Barbara</creatorcontrib><creatorcontrib>Landick, Robert</creatorcontrib><creatorcontrib>Campbell, Elizabeth A.</creatorcontrib><creatorcontrib>Rock, Jeremy M.</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eckartt, Kathryn A.</au><au>Delbeau, Madeleine</au><au>Munsamy-Govender, Vanisha</au><au>DeJesus, Michael A.</au><au>Azadian, Zachary A.</au><au>Reddy, Abhijna K.</au><au>Chandanani, Joshua</au><au>Poulton, Nicholas C.</au><au>Quiñones-Garcia, Stefany</au><au>Bosch, Barbara</au><au>Landick, Robert</au><au>Campbell, Elizabeth A.</au><au>Rock, Jeremy M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compensatory evolution in NusG improves fitness of drug-resistant M. tuberculosis</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-04-04</date><risdate>2024</risdate><volume>628</volume><issue>8006</issue><spage>186</spage><epage>194</epage><pages>186-194</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Drug-resistant bacteria are emerging as a global threat, despite frequently being less fit than their drug-susceptible ancestors
1
–
8
. Here we sought to define the mechanisms that drive or buffer the fitness cost of rifampicin resistance (RifR) in the bacterial pathogen
Mycobacterium tuberculosis
(Mtb). Rifampicin inhibits RNA polymerase (RNAP) and is a cornerstone of modern short-course tuberculosis therapy
9
,
10
. However, RifR Mtb accounts for one-quarter of all deaths due to drug-resistant bacteria
11
,
12
. We took a comparative functional genomics approach to define processes that are differentially vulnerable to CRISPR interference (CRISPRi) inhibition in RifR Mtb. Among other hits, we found that the universally conserved transcription factor NusG is crucial for the fitness of RifR Mtb. In contrast to its role in
Escherichia coli
, Mtb NusG has an essential RNAP pro-pausing function mediated by distinct contacts with RNAP and the DNA
13
. We find this pro-pausing NusG–RNAP interface to be under positive selection in clinical RifR Mtb isolates. Mutations in the NusG–RNAP interface reduce pro-pausing activity and increase fitness of RifR Mtb. Collectively, these results define excessive RNAP pausing as a molecular mechanism that drives the fitness cost of RifR in Mtb, identify a new mechanism of compensation to overcome this cost, suggest rational approaches to exacerbate the fitness cost, and, more broadly, could inform new therapeutic approaches to develop drug combinations to slow the evolution of RifR in Mtb.
In
Mycobacterium tuberculosis
, the fitness cost of rifampicin resistance is partially due to excessive RNA polymerase pausing and is rescued by mutations in the pro-pausing transcription factor NusG.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38509362</pmid><doi>10.1038/s41586-024-07206-5</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1332-128X</orcidid><orcidid>https://orcid.org/0000-0003-2671-2412</orcidid><orcidid>https://orcid.org/0000-0003-3867-0299</orcidid><orcidid>https://orcid.org/0000-0002-5042-0383</orcidid><orcidid>https://orcid.org/0000-0002-9310-951X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2024-04, Vol.628 (8006), p.186-194 |
issn | 0028-0836 1476-4687 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10990936 |
source | Springer Nature - Connect here FIRST to enable access |
subjects | 38/43 631/326/325/2482 631/326/41/2531 631/326/421 Antimicrobial agents Bacteria Bacterial Proteins - genetics Bacterial Proteins - metabolism Conserved Sequence CRISPR DNA-directed RNA polymerase DNA-Directed RNA Polymerases - antagonists & inhibitors DNA-Directed RNA Polymerases - genetics DNA-Directed RNA Polymerases - metabolism Drug resistance Drug Resistance, Bacterial - drug effects Drug Resistance, Bacterial - genetics E coli Escherichia coli - genetics Escherichia coli - metabolism Evolution Evolution, Molecular Fitness Genes Genetic Fitness Genomes Genomics Humanities and Social Sciences Humans Molecular modelling multidisciplinary Mutation Mycobacterium tuberculosis - drug effects Mycobacterium tuberculosis - enzymology Mycobacterium tuberculosis - genetics Mycobacterium tuberculosis - metabolism Pathogens Peptide Elongation Factors - genetics Peptide Elongation Factors - metabolism Physiology Positive selection Rifampin Rifampin - pharmacology Rifampin - therapeutic use RNA polymerase Science Science (multidisciplinary) Transcription factors Transcription Factors - genetics Transcription Factors - metabolism Tuberculosis Tuberculosis, Multidrug-Resistant - drug therapy Tuberculosis, Multidrug-Resistant - microbiology |
title | Compensatory evolution in NusG improves fitness of drug-resistant M. tuberculosis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A59%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compensatory%20evolution%20in%20NusG%20improves%20fitness%20of%20drug-resistant%20M.%20tuberculosis&rft.jtitle=Nature%20(London)&rft.au=Eckartt,%20Kathryn%20A.&rft.date=2024-04-04&rft.volume=628&rft.issue=8006&rft.spage=186&rft.epage=194&rft.pages=186-194&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07206-5&rft_dat=%3Cproquest_pubme%3E2973101733%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3415-90129bd7b43360a355843c8705e96f9b77f16ebe640e33e71eef90b31870f3983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3034493077&rft_id=info:pmid/38509362&rfr_iscdi=true |