Loading…
Targeting tumor extracellular matrix activates the tumor-draining lymph nodes
Disruption of the tumor extracellular matrix (ECM) may alter immune cell infiltration into the tumor and antitumor T cell priming in the tumor-draining lymph nodes (tdLNs). Here, we explore how intratumoral enzyme treatment (ET) of B16 melanoma tumors with ECM-depleting enzyme hyaluronidase alters a...
Saved in:
Published in: | Cancer Immunology, Immunotherapy Immunotherapy, 2022-12, Vol.71 (12), p.2957-2968 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c431t-ee4b13c8931f630e44375fe3d93ab03bf1ab488e64bc7d5cbc15f0ab8f05e7293 |
---|---|
cites | cdi_FETCH-LOGICAL-c431t-ee4b13c8931f630e44375fe3d93ab03bf1ab488e64bc7d5cbc15f0ab8f05e7293 |
container_end_page | 2968 |
container_issue | 12 |
container_start_page | 2957 |
container_title | Cancer Immunology, Immunotherapy |
container_volume | 71 |
creator | Najibi, Alexander J. Shih, Ting-Yu Zhang, David K. Y. Lou, Junzhe Sobral, Miguel C. Wang, Hua Dellacherie, Maxence O. Adu-Berchie, Kwasi Mooney, David J. |
description | Disruption of the tumor extracellular matrix (ECM) may alter immune cell infiltration into the tumor and antitumor T cell priming in the tumor-draining lymph nodes (tdLNs). Here, we explore how intratumoral enzyme treatment (ET) of B16 melanoma tumors with ECM-depleting enzyme hyaluronidase alters adaptive and innate immune populations, including T cells, DCs, and macrophages, in the tumors and tdLNs. ET increased CD103
+
DC abundance in the tdLNs, as well as antigen presentation of a model tumor antigen ovalbumin (OVA), eliciting local OVA-specific CD8
+
T cell responses. Delivered in combination with a distant cryogel-based cancer vaccine, ET increased the systemic antigen-specific CD8
+
T cell response. By enhancing activity within the tdLN, ET may broadly support immunotherapies in generating tumor-specific immunity. |
doi_str_mv | 10.1007/s00262-022-03212-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10992058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2727498986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-ee4b13c8931f630e44375fe3d93ab03bf1ab488e64bc7d5cbc15f0ab8f05e7293</originalsourceid><addsrcrecordid>eNp9kTlPxDAQhS0EguX4AxQoEg1NYHwkcSqEEJcEooHacpzJblCOxXZW8O_xkmU5CgrLtuab53l-hBxSOKUA2ZkDYCmLgYXFGWVxukEmVPBwlQndJBPgAuIMQOyQXedewoFBnm-THZ4kTGQ5nZCHJ22n6OtuGvmh7W2Eb95qg00zNNpGrfa2fou08fVCe3SRn-EIxqXVdbfsa97b-Szq-hLdPtmqdOPwYLXvkefrq6fL2_j-8ebu8uI-NoJTHyOKgnIjc06rlAMKwbOkQl7mXBfAi4rqQkiJqShMViamMDSpQBeyggQzlvM9cj7qzoeixdJgF4Zu1NzWrbbvqte1-l3p6pma9gtFg38GiQwKJysF278O6Lxqa7e0rTvsB6dYmtLwi0zygB7_QV_6wXbBn2IZy0Quc5kGio2Usb1zFqv1NBTUMi41xqVCXOozLrVsOvrpY93ylU8A-Ai4UOqmaL_f_kf2A8AGoew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727498986</pqid></control><display><type>article</type><title>Targeting tumor extracellular matrix activates the tumor-draining lymph nodes</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><source>PubMed Central</source><creator>Najibi, Alexander J. ; Shih, Ting-Yu ; Zhang, David K. Y. ; Lou, Junzhe ; Sobral, Miguel C. ; Wang, Hua ; Dellacherie, Maxence O. ; Adu-Berchie, Kwasi ; Mooney, David J.</creator><creatorcontrib>Najibi, Alexander J. ; Shih, Ting-Yu ; Zhang, David K. Y. ; Lou, Junzhe ; Sobral, Miguel C. ; Wang, Hua ; Dellacherie, Maxence O. ; Adu-Berchie, Kwasi ; Mooney, David J.</creatorcontrib><description>Disruption of the tumor extracellular matrix (ECM) may alter immune cell infiltration into the tumor and antitumor T cell priming in the tumor-draining lymph nodes (tdLNs). Here, we explore how intratumoral enzyme treatment (ET) of B16 melanoma tumors with ECM-depleting enzyme hyaluronidase alters adaptive and innate immune populations, including T cells, DCs, and macrophages, in the tumors and tdLNs. ET increased CD103
+
DC abundance in the tdLNs, as well as antigen presentation of a model tumor antigen ovalbumin (OVA), eliciting local OVA-specific CD8
+
T cell responses. Delivered in combination with a distant cryogel-based cancer vaccine, ET increased the systemic antigen-specific CD8
+
T cell response. By enhancing activity within the tdLN, ET may broadly support immunotherapies in generating tumor-specific immunity.</description><identifier>ISSN: 0340-7004</identifier><identifier>EISSN: 1432-0851</identifier><identifier>DOI: 10.1007/s00262-022-03212-6</identifier><identifier>PMID: 35524791</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animals ; Antigen presentation ; Antigens, Neoplasm ; Cancer Research ; Cancer Vaccines ; CD103 antigen ; CD8 antigen ; Collagen ; Cryogels ; Dendritic Cells ; Enzymes ; Extracellular Matrix ; Humans ; Hyaluronic acid ; Hyaluronoglucosaminidase ; Immunology ; Immunotherapy ; Laboratories ; Lymph Nodes ; Lymphatic system ; Lymphocytes ; Lymphocytes T ; Macrophages ; Medicine ; Medicine & Public Health ; Melanoma ; Melanoma, Experimental ; Metastases ; Oncology ; Original ; Original Article ; Ovalbumin ; Physical restraints ; Prostate cancer ; Rheology ; Tumors ; Vaccines</subject><ispartof>Cancer Immunology, Immunotherapy, 2022-12, Vol.71 (12), p.2957-2968</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-ee4b13c8931f630e44375fe3d93ab03bf1ab488e64bc7d5cbc15f0ab8f05e7293</citedby><cites>FETCH-LOGICAL-c431t-ee4b13c8931f630e44375fe3d93ab03bf1ab488e64bc7d5cbc15f0ab8f05e7293</cites><orcidid>0000-0001-6299-1194</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10992058/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10992058/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35524791$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Najibi, Alexander J.</creatorcontrib><creatorcontrib>Shih, Ting-Yu</creatorcontrib><creatorcontrib>Zhang, David K. Y.</creatorcontrib><creatorcontrib>Lou, Junzhe</creatorcontrib><creatorcontrib>Sobral, Miguel C.</creatorcontrib><creatorcontrib>Wang, Hua</creatorcontrib><creatorcontrib>Dellacherie, Maxence O.</creatorcontrib><creatorcontrib>Adu-Berchie, Kwasi</creatorcontrib><creatorcontrib>Mooney, David J.</creatorcontrib><title>Targeting tumor extracellular matrix activates the tumor-draining lymph nodes</title><title>Cancer Immunology, Immunotherapy</title><addtitle>Cancer Immunol Immunother</addtitle><addtitle>Cancer Immunol Immunother</addtitle><description>Disruption of the tumor extracellular matrix (ECM) may alter immune cell infiltration into the tumor and antitumor T cell priming in the tumor-draining lymph nodes (tdLNs). Here, we explore how intratumoral enzyme treatment (ET) of B16 melanoma tumors with ECM-depleting enzyme hyaluronidase alters adaptive and innate immune populations, including T cells, DCs, and macrophages, in the tumors and tdLNs. ET increased CD103
+
DC abundance in the tdLNs, as well as antigen presentation of a model tumor antigen ovalbumin (OVA), eliciting local OVA-specific CD8
+
T cell responses. Delivered in combination with a distant cryogel-based cancer vaccine, ET increased the systemic antigen-specific CD8
+
T cell response. By enhancing activity within the tdLN, ET may broadly support immunotherapies in generating tumor-specific immunity.</description><subject>Animals</subject><subject>Antigen presentation</subject><subject>Antigens, Neoplasm</subject><subject>Cancer Research</subject><subject>Cancer Vaccines</subject><subject>CD103 antigen</subject><subject>CD8 antigen</subject><subject>Collagen</subject><subject>Cryogels</subject><subject>Dendritic Cells</subject><subject>Enzymes</subject><subject>Extracellular Matrix</subject><subject>Humans</subject><subject>Hyaluronic acid</subject><subject>Hyaluronoglucosaminidase</subject><subject>Immunology</subject><subject>Immunotherapy</subject><subject>Laboratories</subject><subject>Lymph Nodes</subject><subject>Lymphatic system</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Macrophages</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Melanoma</subject><subject>Melanoma, Experimental</subject><subject>Metastases</subject><subject>Oncology</subject><subject>Original</subject><subject>Original Article</subject><subject>Ovalbumin</subject><subject>Physical restraints</subject><subject>Prostate cancer</subject><subject>Rheology</subject><subject>Tumors</subject><subject>Vaccines</subject><issn>0340-7004</issn><issn>1432-0851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kTlPxDAQhS0EguX4AxQoEg1NYHwkcSqEEJcEooHacpzJblCOxXZW8O_xkmU5CgrLtuab53l-hBxSOKUA2ZkDYCmLgYXFGWVxukEmVPBwlQndJBPgAuIMQOyQXedewoFBnm-THZ4kTGQ5nZCHJ22n6OtuGvmh7W2Eb95qg00zNNpGrfa2fou08fVCe3SRn-EIxqXVdbfsa97b-Szq-hLdPtmqdOPwYLXvkefrq6fL2_j-8ebu8uI-NoJTHyOKgnIjc06rlAMKwbOkQl7mXBfAi4rqQkiJqShMViamMDSpQBeyggQzlvM9cj7qzoeixdJgF4Zu1NzWrbbvqte1-l3p6pma9gtFg38GiQwKJysF278O6Lxqa7e0rTvsB6dYmtLwi0zygB7_QV_6wXbBn2IZy0Quc5kGio2Usb1zFqv1NBTUMi41xqVCXOozLrVsOvrpY93ylU8A-Ai4UOqmaL_f_kf2A8AGoew</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Najibi, Alexander J.</creator><creator>Shih, Ting-Yu</creator><creator>Zhang, David K. Y.</creator><creator>Lou, Junzhe</creator><creator>Sobral, Miguel C.</creator><creator>Wang, Hua</creator><creator>Dellacherie, Maxence O.</creator><creator>Adu-Berchie, Kwasi</creator><creator>Mooney, David J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6299-1194</orcidid></search><sort><creationdate>20221201</creationdate><title>Targeting tumor extracellular matrix activates the tumor-draining lymph nodes</title><author>Najibi, Alexander J. ; Shih, Ting-Yu ; Zhang, David K. Y. ; Lou, Junzhe ; Sobral, Miguel C. ; Wang, Hua ; Dellacherie, Maxence O. ; Adu-Berchie, Kwasi ; Mooney, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-ee4b13c8931f630e44375fe3d93ab03bf1ab488e64bc7d5cbc15f0ab8f05e7293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Antigen presentation</topic><topic>Antigens, Neoplasm</topic><topic>Cancer Research</topic><topic>Cancer Vaccines</topic><topic>CD103 antigen</topic><topic>CD8 antigen</topic><topic>Collagen</topic><topic>Cryogels</topic><topic>Dendritic Cells</topic><topic>Enzymes</topic><topic>Extracellular Matrix</topic><topic>Humans</topic><topic>Hyaluronic acid</topic><topic>Hyaluronoglucosaminidase</topic><topic>Immunology</topic><topic>Immunotherapy</topic><topic>Laboratories</topic><topic>Lymph Nodes</topic><topic>Lymphatic system</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Macrophages</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Melanoma</topic><topic>Melanoma, Experimental</topic><topic>Metastases</topic><topic>Oncology</topic><topic>Original</topic><topic>Original Article</topic><topic>Ovalbumin</topic><topic>Physical restraints</topic><topic>Prostate cancer</topic><topic>Rheology</topic><topic>Tumors</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Najibi, Alexander J.</creatorcontrib><creatorcontrib>Shih, Ting-Yu</creatorcontrib><creatorcontrib>Zhang, David K. Y.</creatorcontrib><creatorcontrib>Lou, Junzhe</creatorcontrib><creatorcontrib>Sobral, Miguel C.</creatorcontrib><creatorcontrib>Wang, Hua</creatorcontrib><creatorcontrib>Dellacherie, Maxence O.</creatorcontrib><creatorcontrib>Adu-Berchie, Kwasi</creatorcontrib><creatorcontrib>Mooney, David J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer Immunology, Immunotherapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Najibi, Alexander J.</au><au>Shih, Ting-Yu</au><au>Zhang, David K. Y.</au><au>Lou, Junzhe</au><au>Sobral, Miguel C.</au><au>Wang, Hua</au><au>Dellacherie, Maxence O.</au><au>Adu-Berchie, Kwasi</au><au>Mooney, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeting tumor extracellular matrix activates the tumor-draining lymph nodes</atitle><jtitle>Cancer Immunology, Immunotherapy</jtitle><stitle>Cancer Immunol Immunother</stitle><addtitle>Cancer Immunol Immunother</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>71</volume><issue>12</issue><spage>2957</spage><epage>2968</epage><pages>2957-2968</pages><issn>0340-7004</issn><eissn>1432-0851</eissn><abstract>Disruption of the tumor extracellular matrix (ECM) may alter immune cell infiltration into the tumor and antitumor T cell priming in the tumor-draining lymph nodes (tdLNs). Here, we explore how intratumoral enzyme treatment (ET) of B16 melanoma tumors with ECM-depleting enzyme hyaluronidase alters adaptive and innate immune populations, including T cells, DCs, and macrophages, in the tumors and tdLNs. ET increased CD103
+
DC abundance in the tdLNs, as well as antigen presentation of a model tumor antigen ovalbumin (OVA), eliciting local OVA-specific CD8
+
T cell responses. Delivered in combination with a distant cryogel-based cancer vaccine, ET increased the systemic antigen-specific CD8
+
T cell response. By enhancing activity within the tdLN, ET may broadly support immunotherapies in generating tumor-specific immunity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>35524791</pmid><doi>10.1007/s00262-022-03212-6</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6299-1194</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0340-7004 |
ispartof | Cancer Immunology, Immunotherapy, 2022-12, Vol.71 (12), p.2957-2968 |
issn | 0340-7004 1432-0851 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10992058 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List; PubMed Central |
subjects | Animals Antigen presentation Antigens, Neoplasm Cancer Research Cancer Vaccines CD103 antigen CD8 antigen Collagen Cryogels Dendritic Cells Enzymes Extracellular Matrix Humans Hyaluronic acid Hyaluronoglucosaminidase Immunology Immunotherapy Laboratories Lymph Nodes Lymphatic system Lymphocytes Lymphocytes T Macrophages Medicine Medicine & Public Health Melanoma Melanoma, Experimental Metastases Oncology Original Original Article Ovalbumin Physical restraints Prostate cancer Rheology Tumors Vaccines |
title | Targeting tumor extracellular matrix activates the tumor-draining lymph nodes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T11%3A44%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeting%20tumor%20extracellular%20matrix%20activates%20the%20tumor-draining%20lymph%20nodes&rft.jtitle=Cancer%20Immunology,%20Immunotherapy&rft.au=Najibi,%20Alexander%20J.&rft.date=2022-12-01&rft.volume=71&rft.issue=12&rft.spage=2957&rft.epage=2968&rft.pages=2957-2968&rft.issn=0340-7004&rft.eissn=1432-0851&rft_id=info:doi/10.1007/s00262-022-03212-6&rft_dat=%3Cproquest_pubme%3E2727498986%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c431t-ee4b13c8931f630e44375fe3d93ab03bf1ab488e64bc7d5cbc15f0ab8f05e7293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2727498986&rft_id=info:pmid/35524791&rfr_iscdi=true |