Loading…

Cistanche phenylethanoid glycosides induce apoptosis and pyroptosis in T-cell lymphoma

, known for its extensive history in Traditional Chinese Medicine (TCM), is valued for its therapeutic properties. Recent studies have identified its anticancer capabilities, yet the mechanisms underlying these properties remain to be fully elucidated. In this study, we determined that a mixture of...

Full description

Saved in:
Bibliographic Details
Published in:American journal of cancer research 2024-01, Vol.14 (3), p.1338-1352
Main Authors: Tang, Ying, Zhao, Fangxin, Zhang, Xuan, Niu, Yan, Liu, Xiulan, Bu, Renqiqige, Ma, Yunlong, Wu, Geyemuri, Li, Beibei, Yang, Hongxin, Wu, Jianqiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:, known for its extensive history in Traditional Chinese Medicine (TCM), is valued for its therapeutic properties. Recent studies have identified its anticancer capabilities, yet the mechanisms underlying these properties remain to be fully elucidated. In this study, we determined that a mixture of four cistanche-derived phenylethanoid glycosides (CPhGs), echinacoside, acteoside, 2-acetylacteoside, and cistanoside A, which are among the main bioactive compounds in , eliminated T-cell lymphoma (TCL) cells by inducing apoptosis and pyroptosis and attenuated tumor growth in a xenograft mouse model. At the molecular level, these CPhGs elevated P53 by inhibiting the SIRT2-MDM2/P300 and PI3K/AKT carcinogenic axes and activating PTEN-Bax tumor-suppressing signaling. Moreover, CPhGs activated noncanonical and alternative pathways to trigger pyroptosis. Interestingly, CPhGs did not activate canonical NLRP3-caspase-1 pyroptotic signaling pathway; instead, CPhGs suppressed the inflammasome factor NLRP3 and the maturation of IL-1β. Treatment with a caspase-1/4 inhibitor and silencing of Gasdermin D (GSDMD) or Gasdermin E (GSDME) partially rescued CPhG-induced cell death. Conversely, forced expression of NLRP3 restored cell proliferation. In summary, our results indicate that CPhGs modulate multiple signaling pathways to achieve their anticancer properties and perform dual roles in pyroptosis and NLRP3-driven proliferation. This study offers experimental support for the potential application of CPhGs in the treatment of TCL.
ISSN:2156-6976
2156-6976
DOI:10.62347/GEZW9659