Loading…
Exploring the Use of Interleaved Stimuli to Measure Cochlear-Implant Excitation Patterns
Purpose Attempts to use current-focussing strategies with cochlear implants (CI) to reduce neural spread-of-excitation have met with only mixed success in human studies, in contrast to promising results in animal studies. Although this discrepancy could stem from between-species anatomical and aetio...
Saved in:
Published in: | Journal of the Association for Research in Otolaryngology 2024-04, Vol.25 (2), p.201-213 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Purpose
Attempts to use current-focussing strategies with cochlear implants (CI) to reduce neural spread-of-excitation have met with only mixed success in human studies, in contrast to promising results in animal studies. Although this discrepancy could stem from between-species anatomical and aetiological differences, the masking experiments used in human studies may be insufficiently sensitive to differences in excitation-pattern width.
Methods
We used an interleaved-masking method to measure psychophysical excitation patterns in seven participants with four masker stimulation configurations: monopolar (MP), partial tripolar (pTP), a wider partial tripolar (pTP + 2), and, importantly, a condition (RP + 2) designed to produce a broader excitation pattern than MP. The probe was always in partial-tripolar configuration.
Results
We found a significant effect of stimulation configuration on both the amount of on-site masking (mask and probe on same electrode; an indirect indicator of sharpness) and the difference between off-site and on-site masking. Differences were driven solely by RP + 2 producing a broader excitation pattern than the other configurations, whereas monopolar and the two current-focussing configurations did not statistically differ from each other.
Conclusion
A method that is sensitive enough to reveal a modest broadening in RP + 2 showed no evidence for sharpening with focussed stimulation. We also showed that although voltage recordings from the implant accurately predicted a broadening of the psychophysical excitation patterns with RP + 2, they wrongly predicted a strong sharpening with pTP + 2. We additionally argue, based on our recent research, that the interleaved-masking method can usefully be applied to non-human species and objective measures of CI excitation patterns. |
---|---|
ISSN: | 1438-7573 1525-3961 1438-7573 |
DOI: | 10.1007/s10162-024-00937-2 |