Loading…

Activated HIF1α of tumor cells promotes chemoresistance development via recruiting GDF15-producing tumor-associated macrophages in gastric cancer

Chemotherapy is the preferred treatment for advanced stage gastric cancer (GC) patients, and developing chemoresistance is a tremendous challenge to efficacy of GC treatment. The treatments of anti-tumor chemo-agents recruit more tumor-associated macrophages (TAMs) which are highly implicated in the...

Full description

Saved in:
Bibliographic Details
Published in:Cancer Immunology, Immunotherapy Immunotherapy, 2020-10, Vol.69 (10), p.1973-1987
Main Authors: Yu, Shan, Li, Qian, Yu, Yiyi, Cui, Yuehong, Li, Wei, Liu, Tianshu, Liu, Fenglin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chemotherapy is the preferred treatment for advanced stage gastric cancer (GC) patients, and developing chemoresistance is a tremendous challenge to efficacy of GC treatment. The treatments of anti-tumor chemo-agents recruit more tumor-associated macrophages (TAMs) which are highly implicated in the chemoresistance development, but the underlying molecular mechanism is unclear. Here, we demonstrate that hypoxia-inducible factor 1α (HIF1α) in GC cells is activated upon 5-fluorouracil (5-FU) treatment and results in much more accumulation of M2-type TAMs which protect tumor cells from chemo-agents. Mechanistically, in the GC cells under the 5-FU treatment, reactive oxygen species is accumulated and then induces the activation of HIF1α signaling to drive the expression of high-mobility group box 1, which leads to more macrophage’s infiltration into GC tumor. In turn, the recruited TAMs exhibit tumor-protected M2-type phenotype and promote the chemoresistance of GC cells via producing growth differentiation factor 15 (GDF15) to exacerbate the fatty acid β-oxidation in tumor cells. Blocking GDF15 using antibody or inhibiting FAO of tumor cells by etomoxir efficiently gave rise to the tumor cell sensitivity to 5-FU. Therefore, our study demonstrates a novel insight in understanding the cross talking between tumor cells and immune microenvironment and provides new therapeutic targets for clinic treatments of gastric cancer.
ISSN:0340-7004
1432-0851
DOI:10.1007/s00262-020-02598-5