Loading…
Improving dendritic cell vaccine immunogenicity by silencing PD-1 ligands using siRNA-lipid nanoparticles combined with antigen mRNA electroporation
Dendritic cell (DC)-based vaccination boosting antigen-specific immunity is being explored for the treatment of cancer and chronic viral infections. Although DC-based immunotherapy can induce immunological responses, its clinical benefit has been limited, indicating that further improvement of DC va...
Saved in:
Published in: | Cancer Immunology, Immunotherapy Immunotherapy, 2013-02, Vol.62 (2), p.285-297 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c461t-8d8b669459dd9d9b3ea5ddaf639c887a7ee694d9e8ebb4ff1057363227966e5a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c461t-8d8b669459dd9d9b3ea5ddaf639c887a7ee694d9e8ebb4ff1057363227966e5a3 |
container_end_page | 297 |
container_issue | 2 |
container_start_page | 285 |
container_title | Cancer Immunology, Immunotherapy |
container_volume | 62 |
creator | Hobo, Willemijn Novobrantseva, Tatiana I. Fredrix, Hanny Wong, Jamie Milstein, Stuart Epstein-Barash, Hila Liu, Ju Schaap, Nicolaas van der Voort, Robbert Dolstra, Harry |
description | Dendritic cell (DC)-based vaccination boosting antigen-specific immunity is being explored for the treatment of cancer and chronic viral infections. Although DC-based immunotherapy can induce immunological responses, its clinical benefit has been limited, indicating that further improvement of DC vaccine potency is essential. In this study, we explored the generation of a clinical-grade applicable DC vaccine with improved immunogenic potential by combining PD-1 ligand siRNA and target antigen mRNA delivery. We demonstrated that PD-L1 and PD-L2 siRNA delivery using DLin-KC2-DMA-containing lipid nanoparticles (LNP) mediated efficient and specific knockdown of PD-L expression on human monocyte-derived DC. The established siRNA-LNP transfection method did not affect DC phenotype or migratory capacity and resulted in acceptable DC viability. Furthermore, we showed that siRNA-LNP transfection can be successfully combined with both target antigen peptide loading and mRNA electroporation. Finally, we demonstrated that these PD-L-silenced DC loaded with antigen mRNA superiorly boost ex vivo antigen-specific CD8
+
T cell responses from transplanted cancer patients. Together, these findings indicate that our PD-L siRNA-LNP-modified DC are attractive cells for clinical-grade production and in vivo application to induce and boost immune responses not only in transplanted cancer patients, but likely also in other settings. |
doi_str_mv | 10.1007/s00262-012-1334-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11028421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2888933921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-8d8b669459dd9d9b3ea5ddaf639c887a7ee694d9e8ebb4ff1057363227966e5a3</originalsourceid><addsrcrecordid>eNp1kc1u1TAQhS0EopfCA7BBltiwCfgvTrxCVctPpQoQgrXl2JPUVWIHO7novgcPjKNbqoLEytacb45nfBB6TslrSkjzJhPCJKsIZRXlXFT0AdpRwUulrelDtCNckKohRJygJznflAsjSj1GJ4wpwnlb79Cvy2lOce_DgB0El_ziLbYwjnhvrPUBsJ-mNcQBgrd-OeDugLMfIdit5ctFRfHoBxNcxmveStl__XRWjX72DgcT4mxSsRwhYxunrhg6_NMv19iExRdTPBUcwwh2SXGOySw-hqfoUW_GDM9uz1P0_f27b-cfq6vPHy7Pz64qKyRdqta1nZRK1Mo55VTHwdTOmV5yZdu2MQ1AUZ2CFrpO9D0ldcMlZ6xRUkJt-Cl6e_Sd124CZyEsyYx6Tn4y6aCj8fpvJfhrPcS9ppSwVjBaHF7dOqT4Y4W86Mnn7ftMgLhmTZmiklKlREFf_oPexDWFsl-h2lpSIWpZKHqkbIo5J-jvpqFEb6HrY-i6hK630PU2xIv7a9x1_Em5AOwI5CKFAdK9p__r-huUrLrY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1285614456</pqid></control><display><type>article</type><title>Improving dendritic cell vaccine immunogenicity by silencing PD-1 ligands using siRNA-lipid nanoparticles combined with antigen mRNA electroporation</title><source>Springer Nature</source><source>PubMed Central</source><creator>Hobo, Willemijn ; Novobrantseva, Tatiana I. ; Fredrix, Hanny ; Wong, Jamie ; Milstein, Stuart ; Epstein-Barash, Hila ; Liu, Ju ; Schaap, Nicolaas ; van der Voort, Robbert ; Dolstra, Harry</creator><creatorcontrib>Hobo, Willemijn ; Novobrantseva, Tatiana I. ; Fredrix, Hanny ; Wong, Jamie ; Milstein, Stuart ; Epstein-Barash, Hila ; Liu, Ju ; Schaap, Nicolaas ; van der Voort, Robbert ; Dolstra, Harry</creatorcontrib><description>Dendritic cell (DC)-based vaccination boosting antigen-specific immunity is being explored for the treatment of cancer and chronic viral infections. Although DC-based immunotherapy can induce immunological responses, its clinical benefit has been limited, indicating that further improvement of DC vaccine potency is essential. In this study, we explored the generation of a clinical-grade applicable DC vaccine with improved immunogenic potential by combining PD-1 ligand siRNA and target antigen mRNA delivery. We demonstrated that PD-L1 and PD-L2 siRNA delivery using DLin-KC2-DMA-containing lipid nanoparticles (LNP) mediated efficient and specific knockdown of PD-L expression on human monocyte-derived DC. The established siRNA-LNP transfection method did not affect DC phenotype or migratory capacity and resulted in acceptable DC viability. Furthermore, we showed that siRNA-LNP transfection can be successfully combined with both target antigen peptide loading and mRNA electroporation. Finally, we demonstrated that these PD-L-silenced DC loaded with antigen mRNA superiorly boost ex vivo antigen-specific CD8
+
T cell responses from transplanted cancer patients. Together, these findings indicate that our PD-L siRNA-LNP-modified DC are attractive cells for clinical-grade production and in vivo application to induce and boost immune responses not only in transplanted cancer patients, but likely also in other settings.</description><identifier>ISSN: 0340-7004</identifier><identifier>EISSN: 1432-0851</identifier><identifier>DOI: 10.1007/s00262-012-1334-1</identifier><identifier>PMID: 22903385</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Antigens ; Antigens, Neoplasm - genetics ; Antigens, Neoplasm - immunology ; Cancer ; Cancer Research ; Cancer Vaccines - genetics ; Cancer Vaccines - immunology ; CD8-Positive T-Lymphocytes - immunology ; Dendritic cells ; Dendritic Cells - immunology ; Electroporation ; Gene Silencing ; Hematology ; Humans ; Immunology ; Immunotherapy ; Leukocytes, Mononuclear - immunology ; Ligands ; Lipids ; Lipids - immunology ; Lymphocyte Activation - immunology ; Lymphocytes ; Medicine ; Medicine & Public Health ; Nanoparticles ; Oncology ; Original ; Original Article ; Peptides ; Polyethylene glycol ; Programmed Cell Death 1 Ligand 2 Protein - genetics ; Programmed Cell Death 1 Ligand 2 Protein - immunology ; Programmed Cell Death 1 Receptor - genetics ; Programmed Cell Death 1 Receptor - immunology ; RNA, Messenger - genetics ; RNA, Small Interfering - genetics ; Transfection ; Vaccines ; Viral infections</subject><ispartof>Cancer Immunology, Immunotherapy, 2013-02, Vol.62 (2), p.285-297</ispartof><rights>Springer-Verlag 2012</rights><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-8d8b669459dd9d9b3ea5ddaf639c887a7ee694d9e8ebb4ff1057363227966e5a3</citedby><cites>FETCH-LOGICAL-c461t-8d8b669459dd9d9b3ea5ddaf639c887a7ee694d9e8ebb4ff1057363227966e5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11028421/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11028421/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22903385$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hobo, Willemijn</creatorcontrib><creatorcontrib>Novobrantseva, Tatiana I.</creatorcontrib><creatorcontrib>Fredrix, Hanny</creatorcontrib><creatorcontrib>Wong, Jamie</creatorcontrib><creatorcontrib>Milstein, Stuart</creatorcontrib><creatorcontrib>Epstein-Barash, Hila</creatorcontrib><creatorcontrib>Liu, Ju</creatorcontrib><creatorcontrib>Schaap, Nicolaas</creatorcontrib><creatorcontrib>van der Voort, Robbert</creatorcontrib><creatorcontrib>Dolstra, Harry</creatorcontrib><title>Improving dendritic cell vaccine immunogenicity by silencing PD-1 ligands using siRNA-lipid nanoparticles combined with antigen mRNA electroporation</title><title>Cancer Immunology, Immunotherapy</title><addtitle>Cancer Immunol Immunother</addtitle><addtitle>Cancer Immunol Immunother</addtitle><description>Dendritic cell (DC)-based vaccination boosting antigen-specific immunity is being explored for the treatment of cancer and chronic viral infections. Although DC-based immunotherapy can induce immunological responses, its clinical benefit has been limited, indicating that further improvement of DC vaccine potency is essential. In this study, we explored the generation of a clinical-grade applicable DC vaccine with improved immunogenic potential by combining PD-1 ligand siRNA and target antigen mRNA delivery. We demonstrated that PD-L1 and PD-L2 siRNA delivery using DLin-KC2-DMA-containing lipid nanoparticles (LNP) mediated efficient and specific knockdown of PD-L expression on human monocyte-derived DC. The established siRNA-LNP transfection method did not affect DC phenotype or migratory capacity and resulted in acceptable DC viability. Furthermore, we showed that siRNA-LNP transfection can be successfully combined with both target antigen peptide loading and mRNA electroporation. Finally, we demonstrated that these PD-L-silenced DC loaded with antigen mRNA superiorly boost ex vivo antigen-specific CD8
+
T cell responses from transplanted cancer patients. Together, these findings indicate that our PD-L siRNA-LNP-modified DC are attractive cells for clinical-grade production and in vivo application to induce and boost immune responses not only in transplanted cancer patients, but likely also in other settings.</description><subject>Antigens</subject><subject>Antigens, Neoplasm - genetics</subject><subject>Antigens, Neoplasm - immunology</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Cancer Vaccines - genetics</subject><subject>Cancer Vaccines - immunology</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>Dendritic cells</subject><subject>Dendritic Cells - immunology</subject><subject>Electroporation</subject><subject>Gene Silencing</subject><subject>Hematology</subject><subject>Humans</subject><subject>Immunology</subject><subject>Immunotherapy</subject><subject>Leukocytes, Mononuclear - immunology</subject><subject>Ligands</subject><subject>Lipids</subject><subject>Lipids - immunology</subject><subject>Lymphocyte Activation - immunology</subject><subject>Lymphocytes</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Nanoparticles</subject><subject>Oncology</subject><subject>Original</subject><subject>Original Article</subject><subject>Peptides</subject><subject>Polyethylene glycol</subject><subject>Programmed Cell Death 1 Ligand 2 Protein - genetics</subject><subject>Programmed Cell Death 1 Ligand 2 Protein - immunology</subject><subject>Programmed Cell Death 1 Receptor - genetics</subject><subject>Programmed Cell Death 1 Receptor - immunology</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Small Interfering - genetics</subject><subject>Transfection</subject><subject>Vaccines</subject><subject>Viral infections</subject><issn>0340-7004</issn><issn>1432-0851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kc1u1TAQhS0EopfCA7BBltiwCfgvTrxCVctPpQoQgrXl2JPUVWIHO7novgcPjKNbqoLEytacb45nfBB6TslrSkjzJhPCJKsIZRXlXFT0AdpRwUulrelDtCNckKohRJygJznflAsjSj1GJ4wpwnlb79Cvy2lOce_DgB0El_ziLbYwjnhvrPUBsJ-mNcQBgrd-OeDugLMfIdit5ctFRfHoBxNcxmveStl__XRWjX72DgcT4mxSsRwhYxunrhg6_NMv19iExRdTPBUcwwh2SXGOySw-hqfoUW_GDM9uz1P0_f27b-cfq6vPHy7Pz64qKyRdqta1nZRK1Mo55VTHwdTOmV5yZdu2MQ1AUZ2CFrpO9D0ldcMlZ6xRUkJt-Cl6e_Sd124CZyEsyYx6Tn4y6aCj8fpvJfhrPcS9ppSwVjBaHF7dOqT4Y4W86Mnn7ftMgLhmTZmiklKlREFf_oPexDWFsl-h2lpSIWpZKHqkbIo5J-jvpqFEb6HrY-i6hK630PU2xIv7a9x1_Em5AOwI5CKFAdK9p__r-huUrLrY</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Hobo, Willemijn</creator><creator>Novobrantseva, Tatiana I.</creator><creator>Fredrix, Hanny</creator><creator>Wong, Jamie</creator><creator>Milstein, Stuart</creator><creator>Epstein-Barash, Hila</creator><creator>Liu, Ju</creator><creator>Schaap, Nicolaas</creator><creator>van der Voort, Robbert</creator><creator>Dolstra, Harry</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7TM</scope><scope>5PM</scope></search><sort><creationdate>20130201</creationdate><title>Improving dendritic cell vaccine immunogenicity by silencing PD-1 ligands using siRNA-lipid nanoparticles combined with antigen mRNA electroporation</title><author>Hobo, Willemijn ; Novobrantseva, Tatiana I. ; Fredrix, Hanny ; Wong, Jamie ; Milstein, Stuart ; Epstein-Barash, Hila ; Liu, Ju ; Schaap, Nicolaas ; van der Voort, Robbert ; Dolstra, Harry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-8d8b669459dd9d9b3ea5ddaf639c887a7ee694d9e8ebb4ff1057363227966e5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Antigens</topic><topic>Antigens, Neoplasm - genetics</topic><topic>Antigens, Neoplasm - immunology</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Cancer Vaccines - genetics</topic><topic>Cancer Vaccines - immunology</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>Dendritic cells</topic><topic>Dendritic Cells - immunology</topic><topic>Electroporation</topic><topic>Gene Silencing</topic><topic>Hematology</topic><topic>Humans</topic><topic>Immunology</topic><topic>Immunotherapy</topic><topic>Leukocytes, Mononuclear - immunology</topic><topic>Ligands</topic><topic>Lipids</topic><topic>Lipids - immunology</topic><topic>Lymphocyte Activation - immunology</topic><topic>Lymphocytes</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Nanoparticles</topic><topic>Oncology</topic><topic>Original</topic><topic>Original Article</topic><topic>Peptides</topic><topic>Polyethylene glycol</topic><topic>Programmed Cell Death 1 Ligand 2 Protein - genetics</topic><topic>Programmed Cell Death 1 Ligand 2 Protein - immunology</topic><topic>Programmed Cell Death 1 Receptor - genetics</topic><topic>Programmed Cell Death 1 Receptor - immunology</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Small Interfering - genetics</topic><topic>Transfection</topic><topic>Vaccines</topic><topic>Viral infections</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hobo, Willemijn</creatorcontrib><creatorcontrib>Novobrantseva, Tatiana I.</creatorcontrib><creatorcontrib>Fredrix, Hanny</creatorcontrib><creatorcontrib>Wong, Jamie</creatorcontrib><creatorcontrib>Milstein, Stuart</creatorcontrib><creatorcontrib>Epstein-Barash, Hila</creatorcontrib><creatorcontrib>Liu, Ju</creatorcontrib><creatorcontrib>Schaap, Nicolaas</creatorcontrib><creatorcontrib>van der Voort, Robbert</creatorcontrib><creatorcontrib>Dolstra, Harry</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Nucleic Acids Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer Immunology, Immunotherapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hobo, Willemijn</au><au>Novobrantseva, Tatiana I.</au><au>Fredrix, Hanny</au><au>Wong, Jamie</au><au>Milstein, Stuart</au><au>Epstein-Barash, Hila</au><au>Liu, Ju</au><au>Schaap, Nicolaas</au><au>van der Voort, Robbert</au><au>Dolstra, Harry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving dendritic cell vaccine immunogenicity by silencing PD-1 ligands using siRNA-lipid nanoparticles combined with antigen mRNA electroporation</atitle><jtitle>Cancer Immunology, Immunotherapy</jtitle><stitle>Cancer Immunol Immunother</stitle><addtitle>Cancer Immunol Immunother</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>62</volume><issue>2</issue><spage>285</spage><epage>297</epage><pages>285-297</pages><issn>0340-7004</issn><eissn>1432-0851</eissn><abstract>Dendritic cell (DC)-based vaccination boosting antigen-specific immunity is being explored for the treatment of cancer and chronic viral infections. Although DC-based immunotherapy can induce immunological responses, its clinical benefit has been limited, indicating that further improvement of DC vaccine potency is essential. In this study, we explored the generation of a clinical-grade applicable DC vaccine with improved immunogenic potential by combining PD-1 ligand siRNA and target antigen mRNA delivery. We demonstrated that PD-L1 and PD-L2 siRNA delivery using DLin-KC2-DMA-containing lipid nanoparticles (LNP) mediated efficient and specific knockdown of PD-L expression on human monocyte-derived DC. The established siRNA-LNP transfection method did not affect DC phenotype or migratory capacity and resulted in acceptable DC viability. Furthermore, we showed that siRNA-LNP transfection can be successfully combined with both target antigen peptide loading and mRNA electroporation. Finally, we demonstrated that these PD-L-silenced DC loaded with antigen mRNA superiorly boost ex vivo antigen-specific CD8
+
T cell responses from transplanted cancer patients. Together, these findings indicate that our PD-L siRNA-LNP-modified DC are attractive cells for clinical-grade production and in vivo application to induce and boost immune responses not only in transplanted cancer patients, but likely also in other settings.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>22903385</pmid><doi>10.1007/s00262-012-1334-1</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0340-7004 |
ispartof | Cancer Immunology, Immunotherapy, 2013-02, Vol.62 (2), p.285-297 |
issn | 0340-7004 1432-0851 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11028421 |
source | Springer Nature; PubMed Central |
subjects | Antigens Antigens, Neoplasm - genetics Antigens, Neoplasm - immunology Cancer Cancer Research Cancer Vaccines - genetics Cancer Vaccines - immunology CD8-Positive T-Lymphocytes - immunology Dendritic cells Dendritic Cells - immunology Electroporation Gene Silencing Hematology Humans Immunology Immunotherapy Leukocytes, Mononuclear - immunology Ligands Lipids Lipids - immunology Lymphocyte Activation - immunology Lymphocytes Medicine Medicine & Public Health Nanoparticles Oncology Original Original Article Peptides Polyethylene glycol Programmed Cell Death 1 Ligand 2 Protein - genetics Programmed Cell Death 1 Ligand 2 Protein - immunology Programmed Cell Death 1 Receptor - genetics Programmed Cell Death 1 Receptor - immunology RNA, Messenger - genetics RNA, Small Interfering - genetics Transfection Vaccines Viral infections |
title | Improving dendritic cell vaccine immunogenicity by silencing PD-1 ligands using siRNA-lipid nanoparticles combined with antigen mRNA electroporation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A44%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20dendritic%20cell%20vaccine%20immunogenicity%20by%20silencing%20PD-1%20ligands%20using%20siRNA-lipid%20nanoparticles%20combined%20with%20antigen%20mRNA%20electroporation&rft.jtitle=Cancer%20Immunology,%20Immunotherapy&rft.au=Hobo,%20Willemijn&rft.date=2013-02-01&rft.volume=62&rft.issue=2&rft.spage=285&rft.epage=297&rft.pages=285-297&rft.issn=0340-7004&rft.eissn=1432-0851&rft_id=info:doi/10.1007/s00262-012-1334-1&rft_dat=%3Cproquest_pubme%3E2888933921%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c461t-8d8b669459dd9d9b3ea5ddaf639c887a7ee694d9e8ebb4ff1057363227966e5a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1285614456&rft_id=info:pmid/22903385&rfr_iscdi=true |