Loading…
Engineering a nanoantibiotic system displaying dual mechanism of action
In recent decades, peptide amphiphiles (PAs) have established themselves as promising self-assembling bioinspired materials in a wide range of medical fields. Herein, we report a dual-therapeutic system constituted by an antimicrobial PA and a cylindrical protease inhibitor (LJC) to achieve broad an...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2024-04, Vol.121 (16), p.e2321498121 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c335t-aab28fc85d882e829550e5777422c30c2e08ce9c24f289659124c5cfe28b630d3 |
container_end_page | |
container_issue | 16 |
container_start_page | e2321498121 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 121 |
creator | Xing, Huihua de Campos, Luana Janaína Pereira, Aramis Jose Fiora, Maria Mercedes Aguiar-Alves, Fabio Tagliazucchi, Mario Conda-Sheridan, Martin |
description | In recent decades, peptide amphiphiles (PAs) have established themselves as promising self-assembling bioinspired materials in a wide range of medical fields. Herein, we report a dual-therapeutic system constituted by an antimicrobial PA and a cylindrical protease inhibitor (LJC) to achieve broad antimicrobial spectrum and to enhance therapeutic efficacy. We studied two strategies: PA-LJC nanostructures (
) and PA nanostructures + free LJC (
). Computational modeling using a molecular theory for amphiphile self-assembly captures and explains the morphology of PA-LJC nanostructures and the location of encapsulated LJC in agreement with transmission electron microscopy and two-dimensional (2D) NMR observations. The morphology and release profile of PA-LJC assemblies are strongly correlated to the PA:LJC ratio: high LJC loading induces an initial burst release. We then evaluated the antimicrobial activity of our nanosystems toward gram-positive and gram-negative bacteria. We found that the
broadens the spectrum of LJC, reduces the therapeutic concentrations of both agents, and is not impacted by the inoculum effect. Further, the
provides additional benefits including bypassing water solubility limitations of LJC and modulating the release of this molecule. The different properties of PA-LJC nanostructures results in different killing profiles, and reduced cytotoxicity and hemolytic activity. Meanwhile, details in membrane alterations caused by each strategy were revealed by various microscopy and fluorescent techniques. Last, in vivo studies in larvae treated by the
strategy showed better antimicrobial efficacy than polymyxin B. Collectively, this study established a multifunctional platform using a versatile PA to act as an antibiotic, membrane-penetrating assistant, and slow-release delivery vehicle. |
doi_str_mv | 10.1073/pnas.2321498121 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11032466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3043315376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-aab28fc85d882e829550e5777422c30c2e08ce9c24f289659124c5cfe28b630d3</originalsourceid><addsrcrecordid>eNpdkUtLxDAURoMoOo6u3UnBjZs6N68mWYkMvmDAja5DmqZjpE3GphXm39vi29Vd3HM_7sdB6ATDBQZBF5tg0gWhBDMlMcE7aIZB4bxgCnbRDICIXDLCDtBhSi8AoLiEfXRAJVcUhJih2-uw9sG5zod1ZrJgQjSh96WPvbdZ2qbetVnl06Yx2wmpBtNkrbPPJvjUZrHOjO19DEdorzZNcsefc46ebq4fl3f56uH2fnm1yi2lvM-NKYmsreSVlMRJojgHx4UQjBBLwRIH0jplCauJVAVXmDDLbe2ILAsKFZ2jy4_czVC2rrIu9J1p9Kbzrem2Ohqv_26Cf9br-KYxBkpYUYwJ558JXXwdXOp165N1TWOCi0PSFCjnVGAuRvTsH_oShy6M_UaKUYpHbgpcfFC2iyl1rv7-BoOeLOnJkv6xNF6c_i7xzX9poe8xyI42</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3043315376</pqid></control><display><type>article</type><title>Engineering a nanoantibiotic system displaying dual mechanism of action</title><source>PubMed Central</source><creator>Xing, Huihua ; de Campos, Luana Janaína ; Pereira, Aramis Jose ; Fiora, Maria Mercedes ; Aguiar-Alves, Fabio ; Tagliazucchi, Mario ; Conda-Sheridan, Martin</creator><creatorcontrib>Xing, Huihua ; de Campos, Luana Janaína ; Pereira, Aramis Jose ; Fiora, Maria Mercedes ; Aguiar-Alves, Fabio ; Tagliazucchi, Mario ; Conda-Sheridan, Martin</creatorcontrib><description>In recent decades, peptide amphiphiles (PAs) have established themselves as promising self-assembling bioinspired materials in a wide range of medical fields. Herein, we report a dual-therapeutic system constituted by an antimicrobial PA and a cylindrical protease inhibitor (LJC) to achieve broad antimicrobial spectrum and to enhance therapeutic efficacy. We studied two strategies: PA-LJC nanostructures (
) and PA nanostructures + free LJC (
). Computational modeling using a molecular theory for amphiphile self-assembly captures and explains the morphology of PA-LJC nanostructures and the location of encapsulated LJC in agreement with transmission electron microscopy and two-dimensional (2D) NMR observations. The morphology and release profile of PA-LJC assemblies are strongly correlated to the PA:LJC ratio: high LJC loading induces an initial burst release. We then evaluated the antimicrobial activity of our nanosystems toward gram-positive and gram-negative bacteria. We found that the
broadens the spectrum of LJC, reduces the therapeutic concentrations of both agents, and is not impacted by the inoculum effect. Further, the
provides additional benefits including bypassing water solubility limitations of LJC and modulating the release of this molecule. The different properties of PA-LJC nanostructures results in different killing profiles, and reduced cytotoxicity and hemolytic activity. Meanwhile, details in membrane alterations caused by each strategy were revealed by various microscopy and fluorescent techniques. Last, in vivo studies in larvae treated by the
strategy showed better antimicrobial efficacy than polymyxin B. Collectively, this study established a multifunctional platform using a versatile PA to act as an antibiotic, membrane-penetrating assistant, and slow-release delivery vehicle.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2321498121</identifier><identifier>PMID: 38593077</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; Anti-Infective Agents ; Antimicrobial activity ; Antimicrobial agents ; Bacteria ; Biocompatibility ; Biological Sciences ; Biomimetics ; Cytotoxicity ; Effectiveness ; Encapsulation ; Fluorescence ; Gram-Negative Bacteria ; Gram-Positive Bacteria ; In vivo methods and tests ; Inoculum ; Larvae ; Membranes ; Microscopy ; Molecular theory ; Morphology ; Nanostructure ; Nanostructures - chemistry ; NMR ; Nuclear magnetic resonance ; Pharmacology ; Physical Sciences ; Polymyxin B ; Protease inhibitors ; Proteinase inhibitors ; Self-assembly ; Transmission electron microscopy</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-04, Vol.121 (16), p.e2321498121</ispartof><rights>Copyright National Academy of Sciences Apr 16, 2024</rights><rights>Copyright © 2024 the Author(s). Published by PNAS. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c335t-aab28fc85d882e829550e5777422c30c2e08ce9c24f289659124c5cfe28b630d3</cites><orcidid>0000-0003-4755-955X ; 0000-0002-3568-2545 ; 0000-0001-8527-688X ; 0000-0001-7276-6601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11032466/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11032466/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38593077$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xing, Huihua</creatorcontrib><creatorcontrib>de Campos, Luana Janaína</creatorcontrib><creatorcontrib>Pereira, Aramis Jose</creatorcontrib><creatorcontrib>Fiora, Maria Mercedes</creatorcontrib><creatorcontrib>Aguiar-Alves, Fabio</creatorcontrib><creatorcontrib>Tagliazucchi, Mario</creatorcontrib><creatorcontrib>Conda-Sheridan, Martin</creatorcontrib><title>Engineering a nanoantibiotic system displaying dual mechanism of action</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>In recent decades, peptide amphiphiles (PAs) have established themselves as promising self-assembling bioinspired materials in a wide range of medical fields. Herein, we report a dual-therapeutic system constituted by an antimicrobial PA and a cylindrical protease inhibitor (LJC) to achieve broad antimicrobial spectrum and to enhance therapeutic efficacy. We studied two strategies: PA-LJC nanostructures (
) and PA nanostructures + free LJC (
). Computational modeling using a molecular theory for amphiphile self-assembly captures and explains the morphology of PA-LJC nanostructures and the location of encapsulated LJC in agreement with transmission electron microscopy and two-dimensional (2D) NMR observations. The morphology and release profile of PA-LJC assemblies are strongly correlated to the PA:LJC ratio: high LJC loading induces an initial burst release. We then evaluated the antimicrobial activity of our nanosystems toward gram-positive and gram-negative bacteria. We found that the
broadens the spectrum of LJC, reduces the therapeutic concentrations of both agents, and is not impacted by the inoculum effect. Further, the
provides additional benefits including bypassing water solubility limitations of LJC and modulating the release of this molecule. The different properties of PA-LJC nanostructures results in different killing profiles, and reduced cytotoxicity and hemolytic activity. Meanwhile, details in membrane alterations caused by each strategy were revealed by various microscopy and fluorescent techniques. Last, in vivo studies in larvae treated by the
strategy showed better antimicrobial efficacy than polymyxin B. Collectively, this study established a multifunctional platform using a versatile PA to act as an antibiotic, membrane-penetrating assistant, and slow-release delivery vehicle.</description><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Anti-Infective Agents</subject><subject>Antimicrobial activity</subject><subject>Antimicrobial agents</subject><subject>Bacteria</subject><subject>Biocompatibility</subject><subject>Biological Sciences</subject><subject>Biomimetics</subject><subject>Cytotoxicity</subject><subject>Effectiveness</subject><subject>Encapsulation</subject><subject>Fluorescence</subject><subject>Gram-Negative Bacteria</subject><subject>Gram-Positive Bacteria</subject><subject>In vivo methods and tests</subject><subject>Inoculum</subject><subject>Larvae</subject><subject>Membranes</subject><subject>Microscopy</subject><subject>Molecular theory</subject><subject>Morphology</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Pharmacology</subject><subject>Physical Sciences</subject><subject>Polymyxin B</subject><subject>Protease inhibitors</subject><subject>Proteinase inhibitors</subject><subject>Self-assembly</subject><subject>Transmission electron microscopy</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkUtLxDAURoMoOo6u3UnBjZs6N68mWYkMvmDAja5DmqZjpE3GphXm39vi29Vd3HM_7sdB6ATDBQZBF5tg0gWhBDMlMcE7aIZB4bxgCnbRDICIXDLCDtBhSi8AoLiEfXRAJVcUhJih2-uw9sG5zod1ZrJgQjSh96WPvbdZ2qbetVnl06Yx2wmpBtNkrbPPJvjUZrHOjO19DEdorzZNcsefc46ebq4fl3f56uH2fnm1yi2lvM-NKYmsreSVlMRJojgHx4UQjBBLwRIH0jplCauJVAVXmDDLbe2ILAsKFZ2jy4_czVC2rrIu9J1p9Kbzrem2Ohqv_26Cf9br-KYxBkpYUYwJ558JXXwdXOp165N1TWOCi0PSFCjnVGAuRvTsH_oShy6M_UaKUYpHbgpcfFC2iyl1rv7-BoOeLOnJkv6xNF6c_i7xzX9poe8xyI42</recordid><startdate>20240416</startdate><enddate>20240416</enddate><creator>Xing, Huihua</creator><creator>de Campos, Luana Janaína</creator><creator>Pereira, Aramis Jose</creator><creator>Fiora, Maria Mercedes</creator><creator>Aguiar-Alves, Fabio</creator><creator>Tagliazucchi, Mario</creator><creator>Conda-Sheridan, Martin</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4755-955X</orcidid><orcidid>https://orcid.org/0000-0002-3568-2545</orcidid><orcidid>https://orcid.org/0000-0001-8527-688X</orcidid><orcidid>https://orcid.org/0000-0001-7276-6601</orcidid></search><sort><creationdate>20240416</creationdate><title>Engineering a nanoantibiotic system displaying dual mechanism of action</title><author>Xing, Huihua ; de Campos, Luana Janaína ; Pereira, Aramis Jose ; Fiora, Maria Mercedes ; Aguiar-Alves, Fabio ; Tagliazucchi, Mario ; Conda-Sheridan, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-aab28fc85d882e829550e5777422c30c2e08ce9c24f289659124c5cfe28b630d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Anti-Infective Agents</topic><topic>Antimicrobial activity</topic><topic>Antimicrobial agents</topic><topic>Bacteria</topic><topic>Biocompatibility</topic><topic>Biological Sciences</topic><topic>Biomimetics</topic><topic>Cytotoxicity</topic><topic>Effectiveness</topic><topic>Encapsulation</topic><topic>Fluorescence</topic><topic>Gram-Negative Bacteria</topic><topic>Gram-Positive Bacteria</topic><topic>In vivo methods and tests</topic><topic>Inoculum</topic><topic>Larvae</topic><topic>Membranes</topic><topic>Microscopy</topic><topic>Molecular theory</topic><topic>Morphology</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Pharmacology</topic><topic>Physical Sciences</topic><topic>Polymyxin B</topic><topic>Protease inhibitors</topic><topic>Proteinase inhibitors</topic><topic>Self-assembly</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Huihua</creatorcontrib><creatorcontrib>de Campos, Luana Janaína</creatorcontrib><creatorcontrib>Pereira, Aramis Jose</creatorcontrib><creatorcontrib>Fiora, Maria Mercedes</creatorcontrib><creatorcontrib>Aguiar-Alves, Fabio</creatorcontrib><creatorcontrib>Tagliazucchi, Mario</creatorcontrib><creatorcontrib>Conda-Sheridan, Martin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xing, Huihua</au><au>de Campos, Luana Janaína</au><au>Pereira, Aramis Jose</au><au>Fiora, Maria Mercedes</au><au>Aguiar-Alves, Fabio</au><au>Tagliazucchi, Mario</au><au>Conda-Sheridan, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering a nanoantibiotic system displaying dual mechanism of action</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-04-16</date><risdate>2024</risdate><volume>121</volume><issue>16</issue><spage>e2321498121</spage><pages>e2321498121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>In recent decades, peptide amphiphiles (PAs) have established themselves as promising self-assembling bioinspired materials in a wide range of medical fields. Herein, we report a dual-therapeutic system constituted by an antimicrobial PA and a cylindrical protease inhibitor (LJC) to achieve broad antimicrobial spectrum and to enhance therapeutic efficacy. We studied two strategies: PA-LJC nanostructures (
) and PA nanostructures + free LJC (
). Computational modeling using a molecular theory for amphiphile self-assembly captures and explains the morphology of PA-LJC nanostructures and the location of encapsulated LJC in agreement with transmission electron microscopy and two-dimensional (2D) NMR observations. The morphology and release profile of PA-LJC assemblies are strongly correlated to the PA:LJC ratio: high LJC loading induces an initial burst release. We then evaluated the antimicrobial activity of our nanosystems toward gram-positive and gram-negative bacteria. We found that the
broadens the spectrum of LJC, reduces the therapeutic concentrations of both agents, and is not impacted by the inoculum effect. Further, the
provides additional benefits including bypassing water solubility limitations of LJC and modulating the release of this molecule. The different properties of PA-LJC nanostructures results in different killing profiles, and reduced cytotoxicity and hemolytic activity. Meanwhile, details in membrane alterations caused by each strategy were revealed by various microscopy and fluorescent techniques. Last, in vivo studies in larvae treated by the
strategy showed better antimicrobial efficacy than polymyxin B. Collectively, this study established a multifunctional platform using a versatile PA to act as an antibiotic, membrane-penetrating assistant, and slow-release delivery vehicle.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>38593077</pmid><doi>10.1073/pnas.2321498121</doi><orcidid>https://orcid.org/0000-0003-4755-955X</orcidid><orcidid>https://orcid.org/0000-0002-3568-2545</orcidid><orcidid>https://orcid.org/0000-0001-8527-688X</orcidid><orcidid>https://orcid.org/0000-0001-7276-6601</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2024-04, Vol.121 (16), p.e2321498121 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11032466 |
source | PubMed Central |
subjects | Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - pharmacology Anti-Infective Agents Antimicrobial activity Antimicrobial agents Bacteria Biocompatibility Biological Sciences Biomimetics Cytotoxicity Effectiveness Encapsulation Fluorescence Gram-Negative Bacteria Gram-Positive Bacteria In vivo methods and tests Inoculum Larvae Membranes Microscopy Molecular theory Morphology Nanostructure Nanostructures - chemistry NMR Nuclear magnetic resonance Pharmacology Physical Sciences Polymyxin B Protease inhibitors Proteinase inhibitors Self-assembly Transmission electron microscopy |
title | Engineering a nanoantibiotic system displaying dual mechanism of action |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20a%20nanoantibiotic%20system%20displaying%20dual%20mechanism%20of%20action&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Xing,%20Huihua&rft.date=2024-04-16&rft.volume=121&rft.issue=16&rft.spage=e2321498121&rft.pages=e2321498121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2321498121&rft_dat=%3Cproquest_pubme%3E3043315376%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-aab28fc85d882e829550e5777422c30c2e08ce9c24f289659124c5cfe28b630d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3043315376&rft_id=info:pmid/38593077&rfr_iscdi=true |