Loading…
Effect of Graphene Oxide Localization on Morphology Development and Rheological and Mechanical Properties of Poly(lactic acid)/ethylene vinyl Alcohol Copolymer Blend Composites: A Comprehensive Study
This study investigates the rheological, morphological, and mechanical properties of melt-processed polylactide/ethylene vinyl alcohol (70PLA/30EVOH) blend composites containing 0.25, 0.5, and 1 wt.% of graphene oxide (GO) nanoplates. Thermodynamic-based suggested the localization of nanoparticles i...
Saved in:
Published in: | Polymers 2024-04, Vol.16 (8), p.1061 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study investigates the rheological, morphological, and mechanical properties of melt-processed polylactide/ethylene vinyl alcohol (70PLA/30EVOH) blend composites containing 0.25, 0.5, and 1 wt.% of graphene oxide (GO) nanoplates. Thermodynamic-based suggested the localization of nanoparticles in EVOH, SEM studies showed that the introduction of GO to the blend increased dispersed droplet size, which was attributed to the localization of GO within EVOH, as confirmed by TEM. The rheology results indicated a decrease in the elasticity for the composite containing 0.25 wt.% of GO compared to the neat blend, which was attributed to the sliding effect of the added GO nanoplatelets. However, samples containing higher amounts of GO nanoplatelets exhibited more excellent elasticity than the neat blend. The increased elasticity was suggestively attributed to the dominance of hydrodynamic interactions, the physical network of added nanoplatelets, and polymer/GO interactions over the sliding role of the GO nanoplatelets at higher loadings. In addition, the effect of the order of mixing was investigated, and the premixing of PLA and GO exhibited a decrease in the droplet radius compared to the neat blend. It was ascribed to the localization of GO nanosheets in the PLA and interface, which was confirmed by rheological results and mechanical assessments. |
---|---|
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym16081061 |