Loading…

Tmod2 Is a Regulator of Cocaine Responses through Control of Striatal and Cortical Excitability and Drug-Induced Plasticity

Drugs of abuse induce neuroadaptations, including synaptic plasticity, that are critical for transition to addiction, and genes and pathways that regulate these neuroadaptations are potential therapeutic targets. ( ) is an actin-regulating gene that plays an important role in synapse maturation and...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2024-05, Vol.44 (18), p.e1389232024
Main Authors: Mitra, Arojit, Deats, Sean P, Dickson, Price E, Zhu, Jiuhe, Gardin, Justin, Nieman, Brian J, Henkelman, R Mark, Tsai, Nien-Pei, Chesler, Elissa J, Zhang, Zhong-Wei, Kumar, Vivek
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 18
container_start_page e1389232024
container_title The Journal of neuroscience
container_volume 44
creator Mitra, Arojit
Deats, Sean P
Dickson, Price E
Zhu, Jiuhe
Gardin, Justin
Nieman, Brian J
Henkelman, R Mark
Tsai, Nien-Pei
Chesler, Elissa J
Zhang, Zhong-Wei
Kumar, Vivek
description Drugs of abuse induce neuroadaptations, including synaptic plasticity, that are critical for transition to addiction, and genes and pathways that regulate these neuroadaptations are potential therapeutic targets. ( ) is an actin-regulating gene that plays an important role in synapse maturation and dendritic arborization and has been implicated in substance abuse and intellectual disability in humans. Here, we mine the KOMP2 data and find that 2 knock-out mice show emotionality phenotypes that are predictive of addiction vulnerability. Detailed addiction phenotyping shows that deletion does not affect the acute locomotor response to cocaine administration. However, sensitized locomotor responses are highly attenuated in these knock-outs, indicating perturbed drug-induced plasticity. In addition, mutant animals do not self-administer cocaine indicating lack of hedonic responses to cocaine. Whole-brain MR imaging shows differences in brain volume across multiple regions, although transcriptomic experiments did not reveal perturbations in gene coexpression networks. Detailed electrophysiological characterization of KO neurons showed increased spontaneous firing rate of early postnatal and adult cortical and striatal neurons. Cocaine-induced synaptic plasticity that is critical for sensitization is either missing or reciprocal in KO nucleus accumbens shell medium spiny neurons, providing a mechanistic explanation of the cocaine response phenotypes. Combined, these data, collected from both males and females, provide compelling evidence that is a major regulator of plasticity in the mesolimbic system and regulates the reinforcing and addictive properties of cocaine.
doi_str_mv 10.1523/JNEUROSCI.1389-23.2024
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11063827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055537081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-28bcdeedf98e21a8a5f4863ba95a74c03e442b02d811c50b3c57cd014847cce03</originalsourceid><addsrcrecordid>eNpdkVtvEzEQhS1ERUPhL1Qr8cLLhvEtdp4QSgOkqlrUy7Pltb2JK2cdbC-i4s_j0DYCnkZzzjejGR2ETjFMMSf0w_nl8u766maxmmIq5y2hUwKEvUCT6taWAX6JJkAEtDMm2DF6nfM9AAjA4hU6ppKDFJhN0K_bbbSkWeVGN9duPQZdYmpi3yyi0X5wVcy7OGSXm7JJcVxvqjOUFMMeuinJ66JDowdb9VS8qc3yp_FFdz748vDHOUvjul0NdjTONt-CzpWr3ht01OuQ3duneoLuPi9vF1_bi6svq8Wni9ZQRkpLZGesc7afS0ewlpr3TM5op-dcC2aAOsZIB8RKjA2HjhoujAXMJBPGOKAn6OPj3t3YbZ01rt6vg9olv9XpQUXt1b_O4DdqHX8ojGFGJRF1w_unDSl-H10uauuzcSHowcUxKzIXFAMjhFX03X_ofRzTUP9TFDjnVIDElZo9UibFnJPrD9dgUPuA1SFgtQ9YVWUfcB08_fuXw9hzovQ3rP2kIw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055537081</pqid></control><display><type>article</type><title>Tmod2 Is a Regulator of Cocaine Responses through Control of Striatal and Cortical Excitability and Drug-Induced Plasticity</title><source>PubMed Central(OpenAccess)</source><creator>Mitra, Arojit ; Deats, Sean P ; Dickson, Price E ; Zhu, Jiuhe ; Gardin, Justin ; Nieman, Brian J ; Henkelman, R Mark ; Tsai, Nien-Pei ; Chesler, Elissa J ; Zhang, Zhong-Wei ; Kumar, Vivek</creator><creatorcontrib>Mitra, Arojit ; Deats, Sean P ; Dickson, Price E ; Zhu, Jiuhe ; Gardin, Justin ; Nieman, Brian J ; Henkelman, R Mark ; Tsai, Nien-Pei ; Chesler, Elissa J ; Zhang, Zhong-Wei ; Kumar, Vivek</creatorcontrib><description>Drugs of abuse induce neuroadaptations, including synaptic plasticity, that are critical for transition to addiction, and genes and pathways that regulate these neuroadaptations are potential therapeutic targets. ( ) is an actin-regulating gene that plays an important role in synapse maturation and dendritic arborization and has been implicated in substance abuse and intellectual disability in humans. Here, we mine the KOMP2 data and find that 2 knock-out mice show emotionality phenotypes that are predictive of addiction vulnerability. Detailed addiction phenotyping shows that deletion does not affect the acute locomotor response to cocaine administration. However, sensitized locomotor responses are highly attenuated in these knock-outs, indicating perturbed drug-induced plasticity. In addition, mutant animals do not self-administer cocaine indicating lack of hedonic responses to cocaine. Whole-brain MR imaging shows differences in brain volume across multiple regions, although transcriptomic experiments did not reveal perturbations in gene coexpression networks. Detailed electrophysiological characterization of KO neurons showed increased spontaneous firing rate of early postnatal and adult cortical and striatal neurons. Cocaine-induced synaptic plasticity that is critical for sensitization is either missing or reciprocal in KO nucleus accumbens shell medium spiny neurons, providing a mechanistic explanation of the cocaine response phenotypes. Combined, these data, collected from both males and females, provide compelling evidence that is a major regulator of plasticity in the mesolimbic system and regulates the reinforcing and addictive properties of cocaine.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.1389-23.2024</identifier><identifier>PMID: 38508714</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Actin ; Addictions ; Animals ; Brain ; Cerebral Cortex - drug effects ; Cerebral Cortex - physiology ; Cocaine ; Cocaine - pharmacology ; Cocaine-Related Disorders - genetics ; Cocaine-Related Disorders - physiopathology ; Corpus Striatum - drug effects ; Corpus Striatum - metabolism ; Cortical Excitability - drug effects ; Dendritic branching ; Dopamine Uptake Inhibitors - administration &amp; dosage ; Dopamine Uptake Inhibitors - pharmacology ; Drug abuse ; Drug development ; Excitability ; Female ; Firing rate ; Intellectual disabilities ; Magnetic resonance imaging ; Male ; Mesolimbic system ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Microfilament Proteins - genetics ; Microfilament Proteins - metabolism ; Narcotics ; Neostriatum ; Neuroimaging ; Neuronal Plasticity - drug effects ; Neuronal Plasticity - physiology ; Neurons ; Neuroplasticity ; Nucleus accumbens ; Phenotypes ; Phenotyping ; Plasticity ; Spiny neurons ; Synaptic plasticity ; Synaptogenesis ; Therapeutic targets ; Transcriptomics</subject><ispartof>The Journal of neuroscience, 2024-05, Vol.44 (18), p.e1389232024</ispartof><rights>Copyright © 2024 the authors.</rights><rights>Copyright Society for Neuroscience May 1, 2024</rights><rights>Copyright © 2024 the authors 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7461-4713 ; 0000-0003-1032-0107</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11063827/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11063827/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38508714$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mitra, Arojit</creatorcontrib><creatorcontrib>Deats, Sean P</creatorcontrib><creatorcontrib>Dickson, Price E</creatorcontrib><creatorcontrib>Zhu, Jiuhe</creatorcontrib><creatorcontrib>Gardin, Justin</creatorcontrib><creatorcontrib>Nieman, Brian J</creatorcontrib><creatorcontrib>Henkelman, R Mark</creatorcontrib><creatorcontrib>Tsai, Nien-Pei</creatorcontrib><creatorcontrib>Chesler, Elissa J</creatorcontrib><creatorcontrib>Zhang, Zhong-Wei</creatorcontrib><creatorcontrib>Kumar, Vivek</creatorcontrib><title>Tmod2 Is a Regulator of Cocaine Responses through Control of Striatal and Cortical Excitability and Drug-Induced Plasticity</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Drugs of abuse induce neuroadaptations, including synaptic plasticity, that are critical for transition to addiction, and genes and pathways that regulate these neuroadaptations are potential therapeutic targets. ( ) is an actin-regulating gene that plays an important role in synapse maturation and dendritic arborization and has been implicated in substance abuse and intellectual disability in humans. Here, we mine the KOMP2 data and find that 2 knock-out mice show emotionality phenotypes that are predictive of addiction vulnerability. Detailed addiction phenotyping shows that deletion does not affect the acute locomotor response to cocaine administration. However, sensitized locomotor responses are highly attenuated in these knock-outs, indicating perturbed drug-induced plasticity. In addition, mutant animals do not self-administer cocaine indicating lack of hedonic responses to cocaine. Whole-brain MR imaging shows differences in brain volume across multiple regions, although transcriptomic experiments did not reveal perturbations in gene coexpression networks. Detailed electrophysiological characterization of KO neurons showed increased spontaneous firing rate of early postnatal and adult cortical and striatal neurons. Cocaine-induced synaptic plasticity that is critical for sensitization is either missing or reciprocal in KO nucleus accumbens shell medium spiny neurons, providing a mechanistic explanation of the cocaine response phenotypes. Combined, these data, collected from both males and females, provide compelling evidence that is a major regulator of plasticity in the mesolimbic system and regulates the reinforcing and addictive properties of cocaine.</description><subject>Actin</subject><subject>Addictions</subject><subject>Animals</subject><subject>Brain</subject><subject>Cerebral Cortex - drug effects</subject><subject>Cerebral Cortex - physiology</subject><subject>Cocaine</subject><subject>Cocaine - pharmacology</subject><subject>Cocaine-Related Disorders - genetics</subject><subject>Cocaine-Related Disorders - physiopathology</subject><subject>Corpus Striatum - drug effects</subject><subject>Corpus Striatum - metabolism</subject><subject>Cortical Excitability - drug effects</subject><subject>Dendritic branching</subject><subject>Dopamine Uptake Inhibitors - administration &amp; dosage</subject><subject>Dopamine Uptake Inhibitors - pharmacology</subject><subject>Drug abuse</subject><subject>Drug development</subject><subject>Excitability</subject><subject>Female</subject><subject>Firing rate</subject><subject>Intellectual disabilities</subject><subject>Magnetic resonance imaging</subject><subject>Male</subject><subject>Mesolimbic system</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Microfilament Proteins - genetics</subject><subject>Microfilament Proteins - metabolism</subject><subject>Narcotics</subject><subject>Neostriatum</subject><subject>Neuroimaging</subject><subject>Neuronal Plasticity - drug effects</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons</subject><subject>Neuroplasticity</subject><subject>Nucleus accumbens</subject><subject>Phenotypes</subject><subject>Phenotyping</subject><subject>Plasticity</subject><subject>Spiny neurons</subject><subject>Synaptic plasticity</subject><subject>Synaptogenesis</subject><subject>Therapeutic targets</subject><subject>Transcriptomics</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkVtvEzEQhS1ERUPhL1Qr8cLLhvEtdp4QSgOkqlrUy7Pltb2JK2cdbC-i4s_j0DYCnkZzzjejGR2ETjFMMSf0w_nl8u766maxmmIq5y2hUwKEvUCT6taWAX6JJkAEtDMm2DF6nfM9AAjA4hU6ppKDFJhN0K_bbbSkWeVGN9duPQZdYmpi3yyi0X5wVcy7OGSXm7JJcVxvqjOUFMMeuinJ66JDowdb9VS8qc3yp_FFdz748vDHOUvjul0NdjTONt-CzpWr3ht01OuQ3duneoLuPi9vF1_bi6svq8Wni9ZQRkpLZGesc7afS0ewlpr3TM5op-dcC2aAOsZIB8RKjA2HjhoujAXMJBPGOKAn6OPj3t3YbZ01rt6vg9olv9XpQUXt1b_O4DdqHX8ojGFGJRF1w_unDSl-H10uauuzcSHowcUxKzIXFAMjhFX03X_ofRzTUP9TFDjnVIDElZo9UibFnJPrD9dgUPuA1SFgtQ9YVWUfcB08_fuXw9hzovQ3rP2kIw</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Mitra, Arojit</creator><creator>Deats, Sean P</creator><creator>Dickson, Price E</creator><creator>Zhu, Jiuhe</creator><creator>Gardin, Justin</creator><creator>Nieman, Brian J</creator><creator>Henkelman, R Mark</creator><creator>Tsai, Nien-Pei</creator><creator>Chesler, Elissa J</creator><creator>Zhang, Zhong-Wei</creator><creator>Kumar, Vivek</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7461-4713</orcidid><orcidid>https://orcid.org/0000-0003-1032-0107</orcidid></search><sort><creationdate>20240501</creationdate><title>Tmod2 Is a Regulator of Cocaine Responses through Control of Striatal and Cortical Excitability and Drug-Induced Plasticity</title><author>Mitra, Arojit ; Deats, Sean P ; Dickson, Price E ; Zhu, Jiuhe ; Gardin, Justin ; Nieman, Brian J ; Henkelman, R Mark ; Tsai, Nien-Pei ; Chesler, Elissa J ; Zhang, Zhong-Wei ; Kumar, Vivek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-28bcdeedf98e21a8a5f4863ba95a74c03e442b02d811c50b3c57cd014847cce03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actin</topic><topic>Addictions</topic><topic>Animals</topic><topic>Brain</topic><topic>Cerebral Cortex - drug effects</topic><topic>Cerebral Cortex - physiology</topic><topic>Cocaine</topic><topic>Cocaine - pharmacology</topic><topic>Cocaine-Related Disorders - genetics</topic><topic>Cocaine-Related Disorders - physiopathology</topic><topic>Corpus Striatum - drug effects</topic><topic>Corpus Striatum - metabolism</topic><topic>Cortical Excitability - drug effects</topic><topic>Dendritic branching</topic><topic>Dopamine Uptake Inhibitors - administration &amp; dosage</topic><topic>Dopamine Uptake Inhibitors - pharmacology</topic><topic>Drug abuse</topic><topic>Drug development</topic><topic>Excitability</topic><topic>Female</topic><topic>Firing rate</topic><topic>Intellectual disabilities</topic><topic>Magnetic resonance imaging</topic><topic>Male</topic><topic>Mesolimbic system</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Microfilament Proteins - genetics</topic><topic>Microfilament Proteins - metabolism</topic><topic>Narcotics</topic><topic>Neostriatum</topic><topic>Neuroimaging</topic><topic>Neuronal Plasticity - drug effects</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons</topic><topic>Neuroplasticity</topic><topic>Nucleus accumbens</topic><topic>Phenotypes</topic><topic>Phenotyping</topic><topic>Plasticity</topic><topic>Spiny neurons</topic><topic>Synaptic plasticity</topic><topic>Synaptogenesis</topic><topic>Therapeutic targets</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitra, Arojit</creatorcontrib><creatorcontrib>Deats, Sean P</creatorcontrib><creatorcontrib>Dickson, Price E</creatorcontrib><creatorcontrib>Zhu, Jiuhe</creatorcontrib><creatorcontrib>Gardin, Justin</creatorcontrib><creatorcontrib>Nieman, Brian J</creatorcontrib><creatorcontrib>Henkelman, R Mark</creatorcontrib><creatorcontrib>Tsai, Nien-Pei</creatorcontrib><creatorcontrib>Chesler, Elissa J</creatorcontrib><creatorcontrib>Zhang, Zhong-Wei</creatorcontrib><creatorcontrib>Kumar, Vivek</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitra, Arojit</au><au>Deats, Sean P</au><au>Dickson, Price E</au><au>Zhu, Jiuhe</au><au>Gardin, Justin</au><au>Nieman, Brian J</au><au>Henkelman, R Mark</au><au>Tsai, Nien-Pei</au><au>Chesler, Elissa J</au><au>Zhang, Zhong-Wei</au><au>Kumar, Vivek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tmod2 Is a Regulator of Cocaine Responses through Control of Striatal and Cortical Excitability and Drug-Induced Plasticity</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>44</volume><issue>18</issue><spage>e1389232024</spage><pages>e1389232024-</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>Drugs of abuse induce neuroadaptations, including synaptic plasticity, that are critical for transition to addiction, and genes and pathways that regulate these neuroadaptations are potential therapeutic targets. ( ) is an actin-regulating gene that plays an important role in synapse maturation and dendritic arborization and has been implicated in substance abuse and intellectual disability in humans. Here, we mine the KOMP2 data and find that 2 knock-out mice show emotionality phenotypes that are predictive of addiction vulnerability. Detailed addiction phenotyping shows that deletion does not affect the acute locomotor response to cocaine administration. However, sensitized locomotor responses are highly attenuated in these knock-outs, indicating perturbed drug-induced plasticity. In addition, mutant animals do not self-administer cocaine indicating lack of hedonic responses to cocaine. Whole-brain MR imaging shows differences in brain volume across multiple regions, although transcriptomic experiments did not reveal perturbations in gene coexpression networks. Detailed electrophysiological characterization of KO neurons showed increased spontaneous firing rate of early postnatal and adult cortical and striatal neurons. Cocaine-induced synaptic plasticity that is critical for sensitization is either missing or reciprocal in KO nucleus accumbens shell medium spiny neurons, providing a mechanistic explanation of the cocaine response phenotypes. Combined, these data, collected from both males and females, provide compelling evidence that is a major regulator of plasticity in the mesolimbic system and regulates the reinforcing and addictive properties of cocaine.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>38508714</pmid><doi>10.1523/JNEUROSCI.1389-23.2024</doi><orcidid>https://orcid.org/0000-0002-7461-4713</orcidid><orcidid>https://orcid.org/0000-0003-1032-0107</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2024-05, Vol.44 (18), p.e1389232024
issn 0270-6474
1529-2401
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11063827
source PubMed Central(OpenAccess)
subjects Actin
Addictions
Animals
Brain
Cerebral Cortex - drug effects
Cerebral Cortex - physiology
Cocaine
Cocaine - pharmacology
Cocaine-Related Disorders - genetics
Cocaine-Related Disorders - physiopathology
Corpus Striatum - drug effects
Corpus Striatum - metabolism
Cortical Excitability - drug effects
Dendritic branching
Dopamine Uptake Inhibitors - administration & dosage
Dopamine Uptake Inhibitors - pharmacology
Drug abuse
Drug development
Excitability
Female
Firing rate
Intellectual disabilities
Magnetic resonance imaging
Male
Mesolimbic system
Mice
Mice, Inbred C57BL
Mice, Knockout
Microfilament Proteins - genetics
Microfilament Proteins - metabolism
Narcotics
Neostriatum
Neuroimaging
Neuronal Plasticity - drug effects
Neuronal Plasticity - physiology
Neurons
Neuroplasticity
Nucleus accumbens
Phenotypes
Phenotyping
Plasticity
Spiny neurons
Synaptic plasticity
Synaptogenesis
Therapeutic targets
Transcriptomics
title Tmod2 Is a Regulator of Cocaine Responses through Control of Striatal and Cortical Excitability and Drug-Induced Plasticity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A44%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tmod2%20Is%20a%20Regulator%20of%20Cocaine%20Responses%20through%20Control%20of%20Striatal%20and%20Cortical%20Excitability%20and%20Drug-Induced%20Plasticity&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Mitra,%20Arojit&rft.date=2024-05-01&rft.volume=44&rft.issue=18&rft.spage=e1389232024&rft.pages=e1389232024-&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.1389-23.2024&rft_dat=%3Cproquest_pubme%3E3055537081%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c342t-28bcdeedf98e21a8a5f4863ba95a74c03e442b02d811c50b3c57cd014847cce03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3055537081&rft_id=info:pmid/38508714&rfr_iscdi=true