Loading…
Tmod2 Is a Regulator of Cocaine Responses through Control of Striatal and Cortical Excitability and Drug-Induced Plasticity
Drugs of abuse induce neuroadaptations, including synaptic plasticity, that are critical for transition to addiction, and genes and pathways that regulate these neuroadaptations are potential therapeutic targets. ( ) is an actin-regulating gene that plays an important role in synapse maturation and...
Saved in:
Published in: | The Journal of neuroscience 2024-05, Vol.44 (18), p.e1389232024 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 18 |
container_start_page | e1389232024 |
container_title | The Journal of neuroscience |
container_volume | 44 |
creator | Mitra, Arojit Deats, Sean P Dickson, Price E Zhu, Jiuhe Gardin, Justin Nieman, Brian J Henkelman, R Mark Tsai, Nien-Pei Chesler, Elissa J Zhang, Zhong-Wei Kumar, Vivek |
description | Drugs of abuse induce neuroadaptations, including synaptic plasticity, that are critical for transition to addiction, and genes and pathways that regulate these neuroadaptations are potential therapeutic targets.
(
) is an actin-regulating gene that plays an important role in synapse maturation and dendritic arborization and has been implicated in substance abuse and intellectual disability in humans. Here, we mine the KOMP2 data and find that
2 knock-out mice show emotionality phenotypes that are predictive of addiction vulnerability. Detailed addiction phenotyping shows that
deletion does not affect the acute locomotor response to cocaine administration. However, sensitized locomotor responses are highly attenuated in these knock-outs, indicating perturbed drug-induced plasticity. In addition,
mutant animals do not self-administer cocaine indicating lack of hedonic responses to cocaine. Whole-brain MR imaging shows differences in brain volume across multiple regions, although transcriptomic experiments did not reveal perturbations in gene coexpression networks. Detailed electrophysiological characterization of
KO neurons showed increased spontaneous firing rate of early postnatal and adult cortical and striatal neurons. Cocaine-induced synaptic plasticity that is critical for sensitization is either missing or reciprocal in
KO nucleus accumbens shell medium spiny neurons, providing a mechanistic explanation of the cocaine response phenotypes. Combined, these data, collected from both males and females, provide compelling evidence that
is a major regulator of plasticity in the mesolimbic system and regulates the reinforcing and addictive properties of cocaine. |
doi_str_mv | 10.1523/JNEUROSCI.1389-23.2024 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11063827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055537081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-28bcdeedf98e21a8a5f4863ba95a74c03e442b02d811c50b3c57cd014847cce03</originalsourceid><addsrcrecordid>eNpdkVtvEzEQhS1ERUPhL1Qr8cLLhvEtdp4QSgOkqlrUy7Pltb2JK2cdbC-i4s_j0DYCnkZzzjejGR2ETjFMMSf0w_nl8u766maxmmIq5y2hUwKEvUCT6taWAX6JJkAEtDMm2DF6nfM9AAjA4hU6ppKDFJhN0K_bbbSkWeVGN9duPQZdYmpi3yyi0X5wVcy7OGSXm7JJcVxvqjOUFMMeuinJ66JDowdb9VS8qc3yp_FFdz748vDHOUvjul0NdjTONt-CzpWr3ht01OuQ3duneoLuPi9vF1_bi6svq8Wni9ZQRkpLZGesc7afS0ewlpr3TM5op-dcC2aAOsZIB8RKjA2HjhoujAXMJBPGOKAn6OPj3t3YbZ01rt6vg9olv9XpQUXt1b_O4DdqHX8ojGFGJRF1w_unDSl-H10uauuzcSHowcUxKzIXFAMjhFX03X_ofRzTUP9TFDjnVIDElZo9UibFnJPrD9dgUPuA1SFgtQ9YVWUfcB08_fuXw9hzovQ3rP2kIw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055537081</pqid></control><display><type>article</type><title>Tmod2 Is a Regulator of Cocaine Responses through Control of Striatal and Cortical Excitability and Drug-Induced Plasticity</title><source>PubMed Central(OpenAccess)</source><creator>Mitra, Arojit ; Deats, Sean P ; Dickson, Price E ; Zhu, Jiuhe ; Gardin, Justin ; Nieman, Brian J ; Henkelman, R Mark ; Tsai, Nien-Pei ; Chesler, Elissa J ; Zhang, Zhong-Wei ; Kumar, Vivek</creator><creatorcontrib>Mitra, Arojit ; Deats, Sean P ; Dickson, Price E ; Zhu, Jiuhe ; Gardin, Justin ; Nieman, Brian J ; Henkelman, R Mark ; Tsai, Nien-Pei ; Chesler, Elissa J ; Zhang, Zhong-Wei ; Kumar, Vivek</creatorcontrib><description>Drugs of abuse induce neuroadaptations, including synaptic plasticity, that are critical for transition to addiction, and genes and pathways that regulate these neuroadaptations are potential therapeutic targets.
(
) is an actin-regulating gene that plays an important role in synapse maturation and dendritic arborization and has been implicated in substance abuse and intellectual disability in humans. Here, we mine the KOMP2 data and find that
2 knock-out mice show emotionality phenotypes that are predictive of addiction vulnerability. Detailed addiction phenotyping shows that
deletion does not affect the acute locomotor response to cocaine administration. However, sensitized locomotor responses are highly attenuated in these knock-outs, indicating perturbed drug-induced plasticity. In addition,
mutant animals do not self-administer cocaine indicating lack of hedonic responses to cocaine. Whole-brain MR imaging shows differences in brain volume across multiple regions, although transcriptomic experiments did not reveal perturbations in gene coexpression networks. Detailed electrophysiological characterization of
KO neurons showed increased spontaneous firing rate of early postnatal and adult cortical and striatal neurons. Cocaine-induced synaptic plasticity that is critical for sensitization is either missing or reciprocal in
KO nucleus accumbens shell medium spiny neurons, providing a mechanistic explanation of the cocaine response phenotypes. Combined, these data, collected from both males and females, provide compelling evidence that
is a major regulator of plasticity in the mesolimbic system and regulates the reinforcing and addictive properties of cocaine.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.1389-23.2024</identifier><identifier>PMID: 38508714</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Actin ; Addictions ; Animals ; Brain ; Cerebral Cortex - drug effects ; Cerebral Cortex - physiology ; Cocaine ; Cocaine - pharmacology ; Cocaine-Related Disorders - genetics ; Cocaine-Related Disorders - physiopathology ; Corpus Striatum - drug effects ; Corpus Striatum - metabolism ; Cortical Excitability - drug effects ; Dendritic branching ; Dopamine Uptake Inhibitors - administration & dosage ; Dopamine Uptake Inhibitors - pharmacology ; Drug abuse ; Drug development ; Excitability ; Female ; Firing rate ; Intellectual disabilities ; Magnetic resonance imaging ; Male ; Mesolimbic system ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Microfilament Proteins - genetics ; Microfilament Proteins - metabolism ; Narcotics ; Neostriatum ; Neuroimaging ; Neuronal Plasticity - drug effects ; Neuronal Plasticity - physiology ; Neurons ; Neuroplasticity ; Nucleus accumbens ; Phenotypes ; Phenotyping ; Plasticity ; Spiny neurons ; Synaptic plasticity ; Synaptogenesis ; Therapeutic targets ; Transcriptomics</subject><ispartof>The Journal of neuroscience, 2024-05, Vol.44 (18), p.e1389232024</ispartof><rights>Copyright © 2024 the authors.</rights><rights>Copyright Society for Neuroscience May 1, 2024</rights><rights>Copyright © 2024 the authors 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7461-4713 ; 0000-0003-1032-0107</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11063827/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11063827/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38508714$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mitra, Arojit</creatorcontrib><creatorcontrib>Deats, Sean P</creatorcontrib><creatorcontrib>Dickson, Price E</creatorcontrib><creatorcontrib>Zhu, Jiuhe</creatorcontrib><creatorcontrib>Gardin, Justin</creatorcontrib><creatorcontrib>Nieman, Brian J</creatorcontrib><creatorcontrib>Henkelman, R Mark</creatorcontrib><creatorcontrib>Tsai, Nien-Pei</creatorcontrib><creatorcontrib>Chesler, Elissa J</creatorcontrib><creatorcontrib>Zhang, Zhong-Wei</creatorcontrib><creatorcontrib>Kumar, Vivek</creatorcontrib><title>Tmod2 Is a Regulator of Cocaine Responses through Control of Striatal and Cortical Excitability and Drug-Induced Plasticity</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Drugs of abuse induce neuroadaptations, including synaptic plasticity, that are critical for transition to addiction, and genes and pathways that regulate these neuroadaptations are potential therapeutic targets.
(
) is an actin-regulating gene that plays an important role in synapse maturation and dendritic arborization and has been implicated in substance abuse and intellectual disability in humans. Here, we mine the KOMP2 data and find that
2 knock-out mice show emotionality phenotypes that are predictive of addiction vulnerability. Detailed addiction phenotyping shows that
deletion does not affect the acute locomotor response to cocaine administration. However, sensitized locomotor responses are highly attenuated in these knock-outs, indicating perturbed drug-induced plasticity. In addition,
mutant animals do not self-administer cocaine indicating lack of hedonic responses to cocaine. Whole-brain MR imaging shows differences in brain volume across multiple regions, although transcriptomic experiments did not reveal perturbations in gene coexpression networks. Detailed electrophysiological characterization of
KO neurons showed increased spontaneous firing rate of early postnatal and adult cortical and striatal neurons. Cocaine-induced synaptic plasticity that is critical for sensitization is either missing or reciprocal in
KO nucleus accumbens shell medium spiny neurons, providing a mechanistic explanation of the cocaine response phenotypes. Combined, these data, collected from both males and females, provide compelling evidence that
is a major regulator of plasticity in the mesolimbic system and regulates the reinforcing and addictive properties of cocaine.</description><subject>Actin</subject><subject>Addictions</subject><subject>Animals</subject><subject>Brain</subject><subject>Cerebral Cortex - drug effects</subject><subject>Cerebral Cortex - physiology</subject><subject>Cocaine</subject><subject>Cocaine - pharmacology</subject><subject>Cocaine-Related Disorders - genetics</subject><subject>Cocaine-Related Disorders - physiopathology</subject><subject>Corpus Striatum - drug effects</subject><subject>Corpus Striatum - metabolism</subject><subject>Cortical Excitability - drug effects</subject><subject>Dendritic branching</subject><subject>Dopamine Uptake Inhibitors - administration & dosage</subject><subject>Dopamine Uptake Inhibitors - pharmacology</subject><subject>Drug abuse</subject><subject>Drug development</subject><subject>Excitability</subject><subject>Female</subject><subject>Firing rate</subject><subject>Intellectual disabilities</subject><subject>Magnetic resonance imaging</subject><subject>Male</subject><subject>Mesolimbic system</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Microfilament Proteins - genetics</subject><subject>Microfilament Proteins - metabolism</subject><subject>Narcotics</subject><subject>Neostriatum</subject><subject>Neuroimaging</subject><subject>Neuronal Plasticity - drug effects</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons</subject><subject>Neuroplasticity</subject><subject>Nucleus accumbens</subject><subject>Phenotypes</subject><subject>Phenotyping</subject><subject>Plasticity</subject><subject>Spiny neurons</subject><subject>Synaptic plasticity</subject><subject>Synaptogenesis</subject><subject>Therapeutic targets</subject><subject>Transcriptomics</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkVtvEzEQhS1ERUPhL1Qr8cLLhvEtdp4QSgOkqlrUy7Pltb2JK2cdbC-i4s_j0DYCnkZzzjejGR2ETjFMMSf0w_nl8u766maxmmIq5y2hUwKEvUCT6taWAX6JJkAEtDMm2DF6nfM9AAjA4hU6ppKDFJhN0K_bbbSkWeVGN9duPQZdYmpi3yyi0X5wVcy7OGSXm7JJcVxvqjOUFMMeuinJ66JDowdb9VS8qc3yp_FFdz748vDHOUvjul0NdjTONt-CzpWr3ht01OuQ3duneoLuPi9vF1_bi6svq8Wni9ZQRkpLZGesc7afS0ewlpr3TM5op-dcC2aAOsZIB8RKjA2HjhoujAXMJBPGOKAn6OPj3t3YbZ01rt6vg9olv9XpQUXt1b_O4DdqHX8ojGFGJRF1w_unDSl-H10uauuzcSHowcUxKzIXFAMjhFX03X_ofRzTUP9TFDjnVIDElZo9UibFnJPrD9dgUPuA1SFgtQ9YVWUfcB08_fuXw9hzovQ3rP2kIw</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Mitra, Arojit</creator><creator>Deats, Sean P</creator><creator>Dickson, Price E</creator><creator>Zhu, Jiuhe</creator><creator>Gardin, Justin</creator><creator>Nieman, Brian J</creator><creator>Henkelman, R Mark</creator><creator>Tsai, Nien-Pei</creator><creator>Chesler, Elissa J</creator><creator>Zhang, Zhong-Wei</creator><creator>Kumar, Vivek</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7461-4713</orcidid><orcidid>https://orcid.org/0000-0003-1032-0107</orcidid></search><sort><creationdate>20240501</creationdate><title>Tmod2 Is a Regulator of Cocaine Responses through Control of Striatal and Cortical Excitability and Drug-Induced Plasticity</title><author>Mitra, Arojit ; Deats, Sean P ; Dickson, Price E ; Zhu, Jiuhe ; Gardin, Justin ; Nieman, Brian J ; Henkelman, R Mark ; Tsai, Nien-Pei ; Chesler, Elissa J ; Zhang, Zhong-Wei ; Kumar, Vivek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-28bcdeedf98e21a8a5f4863ba95a74c03e442b02d811c50b3c57cd014847cce03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actin</topic><topic>Addictions</topic><topic>Animals</topic><topic>Brain</topic><topic>Cerebral Cortex - drug effects</topic><topic>Cerebral Cortex - physiology</topic><topic>Cocaine</topic><topic>Cocaine - pharmacology</topic><topic>Cocaine-Related Disorders - genetics</topic><topic>Cocaine-Related Disorders - physiopathology</topic><topic>Corpus Striatum - drug effects</topic><topic>Corpus Striatum - metabolism</topic><topic>Cortical Excitability - drug effects</topic><topic>Dendritic branching</topic><topic>Dopamine Uptake Inhibitors - administration & dosage</topic><topic>Dopamine Uptake Inhibitors - pharmacology</topic><topic>Drug abuse</topic><topic>Drug development</topic><topic>Excitability</topic><topic>Female</topic><topic>Firing rate</topic><topic>Intellectual disabilities</topic><topic>Magnetic resonance imaging</topic><topic>Male</topic><topic>Mesolimbic system</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Microfilament Proteins - genetics</topic><topic>Microfilament Proteins - metabolism</topic><topic>Narcotics</topic><topic>Neostriatum</topic><topic>Neuroimaging</topic><topic>Neuronal Plasticity - drug effects</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons</topic><topic>Neuroplasticity</topic><topic>Nucleus accumbens</topic><topic>Phenotypes</topic><topic>Phenotyping</topic><topic>Plasticity</topic><topic>Spiny neurons</topic><topic>Synaptic plasticity</topic><topic>Synaptogenesis</topic><topic>Therapeutic targets</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitra, Arojit</creatorcontrib><creatorcontrib>Deats, Sean P</creatorcontrib><creatorcontrib>Dickson, Price E</creatorcontrib><creatorcontrib>Zhu, Jiuhe</creatorcontrib><creatorcontrib>Gardin, Justin</creatorcontrib><creatorcontrib>Nieman, Brian J</creatorcontrib><creatorcontrib>Henkelman, R Mark</creatorcontrib><creatorcontrib>Tsai, Nien-Pei</creatorcontrib><creatorcontrib>Chesler, Elissa J</creatorcontrib><creatorcontrib>Zhang, Zhong-Wei</creatorcontrib><creatorcontrib>Kumar, Vivek</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitra, Arojit</au><au>Deats, Sean P</au><au>Dickson, Price E</au><au>Zhu, Jiuhe</au><au>Gardin, Justin</au><au>Nieman, Brian J</au><au>Henkelman, R Mark</au><au>Tsai, Nien-Pei</au><au>Chesler, Elissa J</au><au>Zhang, Zhong-Wei</au><au>Kumar, Vivek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tmod2 Is a Regulator of Cocaine Responses through Control of Striatal and Cortical Excitability and Drug-Induced Plasticity</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>44</volume><issue>18</issue><spage>e1389232024</spage><pages>e1389232024-</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>Drugs of abuse induce neuroadaptations, including synaptic plasticity, that are critical for transition to addiction, and genes and pathways that regulate these neuroadaptations are potential therapeutic targets.
(
) is an actin-regulating gene that plays an important role in synapse maturation and dendritic arborization and has been implicated in substance abuse and intellectual disability in humans. Here, we mine the KOMP2 data and find that
2 knock-out mice show emotionality phenotypes that are predictive of addiction vulnerability. Detailed addiction phenotyping shows that
deletion does not affect the acute locomotor response to cocaine administration. However, sensitized locomotor responses are highly attenuated in these knock-outs, indicating perturbed drug-induced plasticity. In addition,
mutant animals do not self-administer cocaine indicating lack of hedonic responses to cocaine. Whole-brain MR imaging shows differences in brain volume across multiple regions, although transcriptomic experiments did not reveal perturbations in gene coexpression networks. Detailed electrophysiological characterization of
KO neurons showed increased spontaneous firing rate of early postnatal and adult cortical and striatal neurons. Cocaine-induced synaptic plasticity that is critical for sensitization is either missing or reciprocal in
KO nucleus accumbens shell medium spiny neurons, providing a mechanistic explanation of the cocaine response phenotypes. Combined, these data, collected from both males and females, provide compelling evidence that
is a major regulator of plasticity in the mesolimbic system and regulates the reinforcing and addictive properties of cocaine.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>38508714</pmid><doi>10.1523/JNEUROSCI.1389-23.2024</doi><orcidid>https://orcid.org/0000-0002-7461-4713</orcidid><orcidid>https://orcid.org/0000-0003-1032-0107</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2024-05, Vol.44 (18), p.e1389232024 |
issn | 0270-6474 1529-2401 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11063827 |
source | PubMed Central(OpenAccess) |
subjects | Actin Addictions Animals Brain Cerebral Cortex - drug effects Cerebral Cortex - physiology Cocaine Cocaine - pharmacology Cocaine-Related Disorders - genetics Cocaine-Related Disorders - physiopathology Corpus Striatum - drug effects Corpus Striatum - metabolism Cortical Excitability - drug effects Dendritic branching Dopamine Uptake Inhibitors - administration & dosage Dopamine Uptake Inhibitors - pharmacology Drug abuse Drug development Excitability Female Firing rate Intellectual disabilities Magnetic resonance imaging Male Mesolimbic system Mice Mice, Inbred C57BL Mice, Knockout Microfilament Proteins - genetics Microfilament Proteins - metabolism Narcotics Neostriatum Neuroimaging Neuronal Plasticity - drug effects Neuronal Plasticity - physiology Neurons Neuroplasticity Nucleus accumbens Phenotypes Phenotyping Plasticity Spiny neurons Synaptic plasticity Synaptogenesis Therapeutic targets Transcriptomics |
title | Tmod2 Is a Regulator of Cocaine Responses through Control of Striatal and Cortical Excitability and Drug-Induced Plasticity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A44%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tmod2%20Is%20a%20Regulator%20of%20Cocaine%20Responses%20through%20Control%20of%20Striatal%20and%20Cortical%20Excitability%20and%20Drug-Induced%20Plasticity&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Mitra,%20Arojit&rft.date=2024-05-01&rft.volume=44&rft.issue=18&rft.spage=e1389232024&rft.pages=e1389232024-&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.1389-23.2024&rft_dat=%3Cproquest_pubme%3E3055537081%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c342t-28bcdeedf98e21a8a5f4863ba95a74c03e442b02d811c50b3c57cd014847cce03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3055537081&rft_id=info:pmid/38508714&rfr_iscdi=true |