Loading…

Mammary tissue-derived extracellular matrix hydrogels reveal the role of irradiation in driving a pro-tumor and immunosuppressive microenvironment

Radiation therapy (RT) is essential for triple negative breast cancer (TNBC) treatment. However, patients with TNBC continue to experience recurrence after RT. The role of the extracellular matrix (ECM) of irradiated breast tissue in tumor recurrence is still unknown. In this study, we evaluated the...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials 2024-07, Vol.308, p.122531-122531, Article 122531
Main Authors: Zhu, Tian, Alves, Steven M., Adamo, Arianna, Wen, Xiaona, Corn, Kevin C., Shostak, Anastasia, Johnson, Shereena, Shaub, Nicholas D., Martello, Shannon E., Hacker, Benjamin C., D'Amore, Antonio, Bardhan, Rizia, Rafat, Marjan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c431t-3175d1c24a65cbf63be9d6a4a165a633f7edee5d2f202353e9c358303ab7e3d43
container_end_page 122531
container_issue
container_start_page 122531
container_title Biomaterials
container_volume 308
creator Zhu, Tian
Alves, Steven M.
Adamo, Arianna
Wen, Xiaona
Corn, Kevin C.
Shostak, Anastasia
Johnson, Shereena
Shaub, Nicholas D.
Martello, Shannon E.
Hacker, Benjamin C.
D'Amore, Antonio
Bardhan, Rizia
Rafat, Marjan
description Radiation therapy (RT) is essential for triple negative breast cancer (TNBC) treatment. However, patients with TNBC continue to experience recurrence after RT. The role of the extracellular matrix (ECM) of irradiated breast tissue in tumor recurrence is still unknown. In this study, we evaluated the structure, molecular composition, and mechanical properties of irradiated murine mammary fat pads (MFPs) and developed ECM hydrogels from decellularized tissues (dECM) to assess the effects of RT-induced ECM changes on breast cancer cell behavior. Irradiated MFPs were characterized by increased ECM deposition and fiber density compared to unirradiated controls, which may provide a platform for cell invasion and proliferation. ECM component changes in collagens I, IV, and VI, and fibronectin were observed following irradiation in both MFPs and dECM hydrogels. Encapsulated TNBC cell proliferation and invasive capacity was enhanced in irradiated dECM hydrogels. In addition, TNBC cells co-cultured with macrophages in irradiated dECM hydrogels induced M2 macrophage polarization and exhibited further increases in proliferation. Our study establishes that the ECM in radiation-damaged sites promotes TNBC invasion and proliferation as well as an immunosuppressive microenvironment. This work represents an important step toward elucidating how changes in the ECM after RT contribute to breast cancer recurrence.
doi_str_mv 10.1016/j.biomaterials.2024.122531
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11065579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961224000656</els_id><sourcerecordid>3003438550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-3175d1c24a65cbf63be9d6a4a165a633f7edee5d2f202353e9c358303ab7e3d43</originalsourceid><addsrcrecordid>eNqNkc2OFCEUhYnROO3oKxjiyk21UBT148aY8TcZ40bXhIJb3XQKaC9UZeY1fGLp9DgZd64I4dxzuOcj5BVnW854--awHV30OgM6Padtzepmy-taCv6IbHjf9ZUcmHxMNow3dTW0vL4gz1I6sHJnTf2UXIi-iPnQb8jvb9p7jbc0u5QWqGwxXcFSuMmoDczzMmukJQzdDd3fWow7mBNFWEHPNO-BYpyBxok6RG2dzi4G6gK1xceFHdX0iLHKi49IdbDUeb-EmJbjESGlkkW9MxghrA5j8BDyc_JkKnvBi7vzkvz89PHH1Zfq-vvnr1fvryvTCJ4rwTtpuakb3UozTq0YYbCtbjRvpW6FmDqwANLWUylISAGDEbIXTOixA2EbcUnenX2Py-jBmhKNelZHdKdCVNRO_fsS3F7t4qo4Z62U3VAcXt85YPy1QMrKu3QqTQeIS1KCMdGUriUr0rdnadk1JYTpPoczdaKqDuohVXWiqs5Uy_DLhz-9H_2LsQg-nAWFDawOUCXjIBiwDsFkZaP7n5w_JYDAyA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3003438550</pqid></control><display><type>article</type><title>Mammary tissue-derived extracellular matrix hydrogels reveal the role of irradiation in driving a pro-tumor and immunosuppressive microenvironment</title><source>ScienceDirect Journals</source><creator>Zhu, Tian ; Alves, Steven M. ; Adamo, Arianna ; Wen, Xiaona ; Corn, Kevin C. ; Shostak, Anastasia ; Johnson, Shereena ; Shaub, Nicholas D. ; Martello, Shannon E. ; Hacker, Benjamin C. ; D'Amore, Antonio ; Bardhan, Rizia ; Rafat, Marjan</creator><creatorcontrib>Zhu, Tian ; Alves, Steven M. ; Adamo, Arianna ; Wen, Xiaona ; Corn, Kevin C. ; Shostak, Anastasia ; Johnson, Shereena ; Shaub, Nicholas D. ; Martello, Shannon E. ; Hacker, Benjamin C. ; D'Amore, Antonio ; Bardhan, Rizia ; Rafat, Marjan</creatorcontrib><description>Radiation therapy (RT) is essential for triple negative breast cancer (TNBC) treatment. However, patients with TNBC continue to experience recurrence after RT. The role of the extracellular matrix (ECM) of irradiated breast tissue in tumor recurrence is still unknown. In this study, we evaluated the structure, molecular composition, and mechanical properties of irradiated murine mammary fat pads (MFPs) and developed ECM hydrogels from decellularized tissues (dECM) to assess the effects of RT-induced ECM changes on breast cancer cell behavior. Irradiated MFPs were characterized by increased ECM deposition and fiber density compared to unirradiated controls, which may provide a platform for cell invasion and proliferation. ECM component changes in collagens I, IV, and VI, and fibronectin were observed following irradiation in both MFPs and dECM hydrogels. Encapsulated TNBC cell proliferation and invasive capacity was enhanced in irradiated dECM hydrogels. In addition, TNBC cells co-cultured with macrophages in irradiated dECM hydrogels induced M2 macrophage polarization and exhibited further increases in proliferation. Our study establishes that the ECM in radiation-damaged sites promotes TNBC invasion and proliferation as well as an immunosuppressive microenvironment. This work represents an important step toward elucidating how changes in the ECM after RT contribute to breast cancer recurrence.</description><identifier>ISSN: 0142-9612</identifier><identifier>ISSN: 1878-5905</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2024.122531</identifier><identifier>PMID: 38531198</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Animals ; Breast cancer ; Cell Line, Tumor ; Cell Proliferation - drug effects ; Cell Proliferation - radiation effects ; dECM hydrogels ; Extracellular Matrix - metabolism ; Female ; Humans ; Hydrogels - chemistry ; Invasion ; M2 macrophages ; Macrophages - metabolism ; Mammary Glands, Animal - radiation effects ; Mice ; Proliferation ; Radiation therapy ; Triple Negative Breast Neoplasms - pathology ; Triple Negative Breast Neoplasms - radiotherapy ; Tumor Microenvironment - radiation effects</subject><ispartof>Biomaterials, 2024-07, Vol.308, p.122531-122531, Article 122531</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c431t-3175d1c24a65cbf63be9d6a4a165a633f7edee5d2f202353e9c358303ab7e3d43</cites><orcidid>0000-0003-0441-4393 ; 0000-0002-9471-4711 ; 0000-0002-2423-6451 ; 0000-0002-9444-4379 ; 0000-0002-6908-6071 ; 0000-0002-6892-4395 ; 0000-0003-1824-8007 ; 0000-0002-7825-9827 ; 0000-0001-7632-793X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38531198$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Tian</creatorcontrib><creatorcontrib>Alves, Steven M.</creatorcontrib><creatorcontrib>Adamo, Arianna</creatorcontrib><creatorcontrib>Wen, Xiaona</creatorcontrib><creatorcontrib>Corn, Kevin C.</creatorcontrib><creatorcontrib>Shostak, Anastasia</creatorcontrib><creatorcontrib>Johnson, Shereena</creatorcontrib><creatorcontrib>Shaub, Nicholas D.</creatorcontrib><creatorcontrib>Martello, Shannon E.</creatorcontrib><creatorcontrib>Hacker, Benjamin C.</creatorcontrib><creatorcontrib>D'Amore, Antonio</creatorcontrib><creatorcontrib>Bardhan, Rizia</creatorcontrib><creatorcontrib>Rafat, Marjan</creatorcontrib><title>Mammary tissue-derived extracellular matrix hydrogels reveal the role of irradiation in driving a pro-tumor and immunosuppressive microenvironment</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Radiation therapy (RT) is essential for triple negative breast cancer (TNBC) treatment. However, patients with TNBC continue to experience recurrence after RT. The role of the extracellular matrix (ECM) of irradiated breast tissue in tumor recurrence is still unknown. In this study, we evaluated the structure, molecular composition, and mechanical properties of irradiated murine mammary fat pads (MFPs) and developed ECM hydrogels from decellularized tissues (dECM) to assess the effects of RT-induced ECM changes on breast cancer cell behavior. Irradiated MFPs were characterized by increased ECM deposition and fiber density compared to unirradiated controls, which may provide a platform for cell invasion and proliferation. ECM component changes in collagens I, IV, and VI, and fibronectin were observed following irradiation in both MFPs and dECM hydrogels. Encapsulated TNBC cell proliferation and invasive capacity was enhanced in irradiated dECM hydrogels. In addition, TNBC cells co-cultured with macrophages in irradiated dECM hydrogels induced M2 macrophage polarization and exhibited further increases in proliferation. Our study establishes that the ECM in radiation-damaged sites promotes TNBC invasion and proliferation as well as an immunosuppressive microenvironment. This work represents an important step toward elucidating how changes in the ECM after RT contribute to breast cancer recurrence.</description><subject>Animals</subject><subject>Breast cancer</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Proliferation - radiation effects</subject><subject>dECM hydrogels</subject><subject>Extracellular Matrix - metabolism</subject><subject>Female</subject><subject>Humans</subject><subject>Hydrogels - chemistry</subject><subject>Invasion</subject><subject>M2 macrophages</subject><subject>Macrophages - metabolism</subject><subject>Mammary Glands, Animal - radiation effects</subject><subject>Mice</subject><subject>Proliferation</subject><subject>Radiation therapy</subject><subject>Triple Negative Breast Neoplasms - pathology</subject><subject>Triple Negative Breast Neoplasms - radiotherapy</subject><subject>Tumor Microenvironment - radiation effects</subject><issn>0142-9612</issn><issn>1878-5905</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkc2OFCEUhYnROO3oKxjiyk21UBT148aY8TcZ40bXhIJb3XQKaC9UZeY1fGLp9DgZd64I4dxzuOcj5BVnW854--awHV30OgM6Padtzepmy-taCv6IbHjf9ZUcmHxMNow3dTW0vL4gz1I6sHJnTf2UXIi-iPnQb8jvb9p7jbc0u5QWqGwxXcFSuMmoDczzMmukJQzdDd3fWow7mBNFWEHPNO-BYpyBxok6RG2dzi4G6gK1xceFHdX0iLHKi49IdbDUeb-EmJbjESGlkkW9MxghrA5j8BDyc_JkKnvBi7vzkvz89PHH1Zfq-vvnr1fvryvTCJ4rwTtpuakb3UozTq0YYbCtbjRvpW6FmDqwANLWUylISAGDEbIXTOixA2EbcUnenX2Py-jBmhKNelZHdKdCVNRO_fsS3F7t4qo4Z62U3VAcXt85YPy1QMrKu3QqTQeIS1KCMdGUriUr0rdnadk1JYTpPoczdaKqDuohVXWiqs5Uy_DLhz-9H_2LsQg-nAWFDawOUCXjIBiwDsFkZaP7n5w_JYDAyA</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Zhu, Tian</creator><creator>Alves, Steven M.</creator><creator>Adamo, Arianna</creator><creator>Wen, Xiaona</creator><creator>Corn, Kevin C.</creator><creator>Shostak, Anastasia</creator><creator>Johnson, Shereena</creator><creator>Shaub, Nicholas D.</creator><creator>Martello, Shannon E.</creator><creator>Hacker, Benjamin C.</creator><creator>D'Amore, Antonio</creator><creator>Bardhan, Rizia</creator><creator>Rafat, Marjan</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0441-4393</orcidid><orcidid>https://orcid.org/0000-0002-9471-4711</orcidid><orcidid>https://orcid.org/0000-0002-2423-6451</orcidid><orcidid>https://orcid.org/0000-0002-9444-4379</orcidid><orcidid>https://orcid.org/0000-0002-6908-6071</orcidid><orcidid>https://orcid.org/0000-0002-6892-4395</orcidid><orcidid>https://orcid.org/0000-0003-1824-8007</orcidid><orcidid>https://orcid.org/0000-0002-7825-9827</orcidid><orcidid>https://orcid.org/0000-0001-7632-793X</orcidid></search><sort><creationdate>20240701</creationdate><title>Mammary tissue-derived extracellular matrix hydrogels reveal the role of irradiation in driving a pro-tumor and immunosuppressive microenvironment</title><author>Zhu, Tian ; Alves, Steven M. ; Adamo, Arianna ; Wen, Xiaona ; Corn, Kevin C. ; Shostak, Anastasia ; Johnson, Shereena ; Shaub, Nicholas D. ; Martello, Shannon E. ; Hacker, Benjamin C. ; D'Amore, Antonio ; Bardhan, Rizia ; Rafat, Marjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-3175d1c24a65cbf63be9d6a4a165a633f7edee5d2f202353e9c358303ab7e3d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Breast cancer</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Proliferation - radiation effects</topic><topic>dECM hydrogels</topic><topic>Extracellular Matrix - metabolism</topic><topic>Female</topic><topic>Humans</topic><topic>Hydrogels - chemistry</topic><topic>Invasion</topic><topic>M2 macrophages</topic><topic>Macrophages - metabolism</topic><topic>Mammary Glands, Animal - radiation effects</topic><topic>Mice</topic><topic>Proliferation</topic><topic>Radiation therapy</topic><topic>Triple Negative Breast Neoplasms - pathology</topic><topic>Triple Negative Breast Neoplasms - radiotherapy</topic><topic>Tumor Microenvironment - radiation effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Tian</creatorcontrib><creatorcontrib>Alves, Steven M.</creatorcontrib><creatorcontrib>Adamo, Arianna</creatorcontrib><creatorcontrib>Wen, Xiaona</creatorcontrib><creatorcontrib>Corn, Kevin C.</creatorcontrib><creatorcontrib>Shostak, Anastasia</creatorcontrib><creatorcontrib>Johnson, Shereena</creatorcontrib><creatorcontrib>Shaub, Nicholas D.</creatorcontrib><creatorcontrib>Martello, Shannon E.</creatorcontrib><creatorcontrib>Hacker, Benjamin C.</creatorcontrib><creatorcontrib>D'Amore, Antonio</creatorcontrib><creatorcontrib>Bardhan, Rizia</creatorcontrib><creatorcontrib>Rafat, Marjan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Tian</au><au>Alves, Steven M.</au><au>Adamo, Arianna</au><au>Wen, Xiaona</au><au>Corn, Kevin C.</au><au>Shostak, Anastasia</au><au>Johnson, Shereena</au><au>Shaub, Nicholas D.</au><au>Martello, Shannon E.</au><au>Hacker, Benjamin C.</au><au>D'Amore, Antonio</au><au>Bardhan, Rizia</au><au>Rafat, Marjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mammary tissue-derived extracellular matrix hydrogels reveal the role of irradiation in driving a pro-tumor and immunosuppressive microenvironment</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>308</volume><spage>122531</spage><epage>122531</epage><pages>122531-122531</pages><artnum>122531</artnum><issn>0142-9612</issn><issn>1878-5905</issn><eissn>1878-5905</eissn><abstract>Radiation therapy (RT) is essential for triple negative breast cancer (TNBC) treatment. However, patients with TNBC continue to experience recurrence after RT. The role of the extracellular matrix (ECM) of irradiated breast tissue in tumor recurrence is still unknown. In this study, we evaluated the structure, molecular composition, and mechanical properties of irradiated murine mammary fat pads (MFPs) and developed ECM hydrogels from decellularized tissues (dECM) to assess the effects of RT-induced ECM changes on breast cancer cell behavior. Irradiated MFPs were characterized by increased ECM deposition and fiber density compared to unirradiated controls, which may provide a platform for cell invasion and proliferation. ECM component changes in collagens I, IV, and VI, and fibronectin were observed following irradiation in both MFPs and dECM hydrogels. Encapsulated TNBC cell proliferation and invasive capacity was enhanced in irradiated dECM hydrogels. In addition, TNBC cells co-cultured with macrophages in irradiated dECM hydrogels induced M2 macrophage polarization and exhibited further increases in proliferation. Our study establishes that the ECM in radiation-damaged sites promotes TNBC invasion and proliferation as well as an immunosuppressive microenvironment. This work represents an important step toward elucidating how changes in the ECM after RT contribute to breast cancer recurrence.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>38531198</pmid><doi>10.1016/j.biomaterials.2024.122531</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0441-4393</orcidid><orcidid>https://orcid.org/0000-0002-9471-4711</orcidid><orcidid>https://orcid.org/0000-0002-2423-6451</orcidid><orcidid>https://orcid.org/0000-0002-9444-4379</orcidid><orcidid>https://orcid.org/0000-0002-6908-6071</orcidid><orcidid>https://orcid.org/0000-0002-6892-4395</orcidid><orcidid>https://orcid.org/0000-0003-1824-8007</orcidid><orcidid>https://orcid.org/0000-0002-7825-9827</orcidid><orcidid>https://orcid.org/0000-0001-7632-793X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2024-07, Vol.308, p.122531-122531, Article 122531
issn 0142-9612
1878-5905
1878-5905
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11065579
source ScienceDirect Journals
subjects Animals
Breast cancer
Cell Line, Tumor
Cell Proliferation - drug effects
Cell Proliferation - radiation effects
dECM hydrogels
Extracellular Matrix - metabolism
Female
Humans
Hydrogels - chemistry
Invasion
M2 macrophages
Macrophages - metabolism
Mammary Glands, Animal - radiation effects
Mice
Proliferation
Radiation therapy
Triple Negative Breast Neoplasms - pathology
Triple Negative Breast Neoplasms - radiotherapy
Tumor Microenvironment - radiation effects
title Mammary tissue-derived extracellular matrix hydrogels reveal the role of irradiation in driving a pro-tumor and immunosuppressive microenvironment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A55%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mammary%20tissue-derived%20extracellular%20matrix%20hydrogels%20reveal%20the%20role%20of%20irradiation%20in%20driving%20a%20pro-tumor%20and%20immunosuppressive%20microenvironment&rft.jtitle=Biomaterials&rft.au=Zhu,%20Tian&rft.date=2024-07-01&rft.volume=308&rft.spage=122531&rft.epage=122531&rft.pages=122531-122531&rft.artnum=122531&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2024.122531&rft_dat=%3Cproquest_pubme%3E3003438550%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c431t-3175d1c24a65cbf63be9d6a4a165a633f7edee5d2f202353e9c358303ab7e3d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3003438550&rft_id=info:pmid/38531198&rfr_iscdi=true