Loading…
Semiparametric copula method for semi-competing risks data subject to interval censoring and left truncation: Application to disability in elderly
We aim to evaluate the marginal effects of covariates on time-to-disability in the elderly under the semi-competing risks framework, as death dependently censors disability, not vice versa. It becomes particularly challenging when time-to-disability is subject to interval censoring due to intermitte...
Saved in:
Published in: | Statistical methods in medical research 2023-04, Vol.32 (4), p.656-670 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c424t-2cfbe72012fbd25254866f83fc497ae67e89129ec793f61183e93115e722c9cd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c424t-2cfbe72012fbd25254866f83fc497ae67e89129ec793f61183e93115e722c9cd3 |
container_end_page | 670 |
container_issue | 4 |
container_start_page | 656 |
container_title | Statistical methods in medical research |
container_volume | 32 |
creator | Sun, Tao Li, Yunlong Xiao, Zhengyan Ding, Ying Wang, Xiaojun |
description | We aim to evaluate the marginal effects of covariates on time-to-disability in the elderly under the semi-competing risks framework, as death dependently censors disability, not vice versa. It becomes particularly challenging when time-to-disability is subject to interval censoring due to intermittent assessments. A left truncation issue arises when the age time scale is applied. We develop a flexible two-parameter copula-based semiparametric transformation model for semi-competing risks data subject to interval censoring and left truncation. The two-parameter copula quantifies both upper and lower tail dependence between two margins. The semiparametric transformation models incorporate proportional hazards and proportional odds models in both margins. We propose a two-step sieve maximum likelihood estimation procedure and study the sieve estimators’ asymptotic properties. Simulations show that the proposed method corrects biases in the marginal method. We demonstrate the proposed method in a large-scale Chinese Longitudinal Healthy Longevity Study and provide new insights into preventing disability in the elderly. The proposed method could be applied to the general semi-competing risks data with intermittently assessed disease status. |
doi_str_mv | 10.1177/09622802221133552 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11070129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_09622802221133552</sage_id><sourcerecordid>2803278621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-2cfbe72012fbd25254866f83fc497ae67e89129ec793f61183e93115e722c9cd3</originalsourceid><addsrcrecordid>eNp1kc1u1TAQhS0EoreFB2CDLLFhk-KfJE7YoKqiUKlSF4W15TjjW18cO9hOpfsaPHEd3VL-xMoazXfOzPgg9IqSU0qFeEf6lrGOMMYo5bxp2BO0obUQFeG8foo2a79agSN0nNKOECJI3T9HR7wVvCGMbNCPG5jsrKKaIEersQ7z4hQu1W0YsQkRpwJUOkwzZOu3ONr0LeFRZYXTMuxAZ5wDtj5DvFMOa_ApxBVUfsQOTGnHxWuVbfDv8dk8O3soVtlokxqss3lfHDC4EaLbv0DPjHIJXj68J-jrxccv55-rq-tPl-dnV5WuWZ0rps0AghHKzDCyhjV117am40bXvVDQCuh6ynrQouempbTj0HNKm6JhutcjP0EfDr7zMkwwls1zVE7O0U4q7mVQVv7Z8fZWbsOdpLT8Y7EuDm8fHGL4vkDKcrJJg3PKQ1iSZEKUiYITWtA3f6G7sERf7pMlIM5E17KVogdKx5BSBPO4DSVyjVz-E3nRvP79jEfFz4wLcHoAktrCr7H_d7wHmpK2nA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2803278621</pqid></control><display><type>article</type><title>Semiparametric copula method for semi-competing risks data subject to interval censoring and left truncation: Application to disability in elderly</title><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024:2025 extension (reading list)</source><creator>Sun, Tao ; Li, Yunlong ; Xiao, Zhengyan ; Ding, Ying ; Wang, Xiaojun</creator><creatorcontrib>Sun, Tao ; Li, Yunlong ; Xiao, Zhengyan ; Ding, Ying ; Wang, Xiaojun</creatorcontrib><description>We aim to evaluate the marginal effects of covariates on time-to-disability in the elderly under the semi-competing risks framework, as death dependently censors disability, not vice versa. It becomes particularly challenging when time-to-disability is subject to interval censoring due to intermittent assessments. A left truncation issue arises when the age time scale is applied. We develop a flexible two-parameter copula-based semiparametric transformation model for semi-competing risks data subject to interval censoring and left truncation. The two-parameter copula quantifies both upper and lower tail dependence between two margins. The semiparametric transformation models incorporate proportional hazards and proportional odds models in both margins. We propose a two-step sieve maximum likelihood estimation procedure and study the sieve estimators’ asymptotic properties. Simulations show that the proposed method corrects biases in the marginal method. We demonstrate the proposed method in a large-scale Chinese Longitudinal Healthy Longevity Study and provide new insights into preventing disability in the elderly. The proposed method could be applied to the general semi-competing risks data with intermittently assessed disease status.</description><identifier>ISSN: 0962-2802</identifier><identifier>EISSN: 1477-0334</identifier><identifier>DOI: 10.1177/09622802221133552</identifier><identifier>PMID: 36735020</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Aged ; Asymptotic methods ; Asymptotic properties ; Competing risks models ; Computer Simulation ; Disability ; Humans ; Intermittent ; Likelihood Functions ; Mathematical models ; Maximum likelihood estimation ; Maximum likelihood method ; Models, Statistical ; Older people ; Parameters ; Proportional Hazards Models ; Transformation</subject><ispartof>Statistical methods in medical research, 2023-04, Vol.32 (4), p.656-670</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-2cfbe72012fbd25254866f83fc497ae67e89129ec793f61183e93115e722c9cd3</citedby><cites>FETCH-LOGICAL-c424t-2cfbe72012fbd25254866f83fc497ae67e89129ec793f61183e93115e722c9cd3</cites><orcidid>0000-0003-4447-3005 ; 0000-0001-5783-3167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902,30976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36735020$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Tao</creatorcontrib><creatorcontrib>Li, Yunlong</creatorcontrib><creatorcontrib>Xiao, Zhengyan</creatorcontrib><creatorcontrib>Ding, Ying</creatorcontrib><creatorcontrib>Wang, Xiaojun</creatorcontrib><title>Semiparametric copula method for semi-competing risks data subject to interval censoring and left truncation: Application to disability in elderly</title><title>Statistical methods in medical research</title><addtitle>Stat Methods Med Res</addtitle><description>We aim to evaluate the marginal effects of covariates on time-to-disability in the elderly under the semi-competing risks framework, as death dependently censors disability, not vice versa. It becomes particularly challenging when time-to-disability is subject to interval censoring due to intermittent assessments. A left truncation issue arises when the age time scale is applied. We develop a flexible two-parameter copula-based semiparametric transformation model for semi-competing risks data subject to interval censoring and left truncation. The two-parameter copula quantifies both upper and lower tail dependence between two margins. The semiparametric transformation models incorporate proportional hazards and proportional odds models in both margins. We propose a two-step sieve maximum likelihood estimation procedure and study the sieve estimators’ asymptotic properties. Simulations show that the proposed method corrects biases in the marginal method. We demonstrate the proposed method in a large-scale Chinese Longitudinal Healthy Longevity Study and provide new insights into preventing disability in the elderly. The proposed method could be applied to the general semi-competing risks data with intermittently assessed disease status.</description><subject>Aged</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Competing risks models</subject><subject>Computer Simulation</subject><subject>Disability</subject><subject>Humans</subject><subject>Intermittent</subject><subject>Likelihood Functions</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood method</subject><subject>Models, Statistical</subject><subject>Older people</subject><subject>Parameters</subject><subject>Proportional Hazards Models</subject><subject>Transformation</subject><issn>0962-2802</issn><issn>1477-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNp1kc1u1TAQhS0EoreFB2CDLLFhk-KfJE7YoKqiUKlSF4W15TjjW18cO9hOpfsaPHEd3VL-xMoazXfOzPgg9IqSU0qFeEf6lrGOMMYo5bxp2BO0obUQFeG8foo2a79agSN0nNKOECJI3T9HR7wVvCGMbNCPG5jsrKKaIEersQ7z4hQu1W0YsQkRpwJUOkwzZOu3ONr0LeFRZYXTMuxAZ5wDtj5DvFMOa_ApxBVUfsQOTGnHxWuVbfDv8dk8O3soVtlokxqss3lfHDC4EaLbv0DPjHIJXj68J-jrxccv55-rq-tPl-dnV5WuWZ0rps0AghHKzDCyhjV117am40bXvVDQCuh6ynrQouempbTj0HNKm6JhutcjP0EfDr7zMkwwls1zVE7O0U4q7mVQVv7Z8fZWbsOdpLT8Y7EuDm8fHGL4vkDKcrJJg3PKQ1iSZEKUiYITWtA3f6G7sERf7pMlIM5E17KVogdKx5BSBPO4DSVyjVz-E3nRvP79jEfFz4wLcHoAktrCr7H_d7wHmpK2nA</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Sun, Tao</creator><creator>Li, Yunlong</creator><creator>Xiao, Zhengyan</creator><creator>Ding, Ying</creator><creator>Wang, Xiaojun</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4447-3005</orcidid><orcidid>https://orcid.org/0000-0001-5783-3167</orcidid></search><sort><creationdate>20230401</creationdate><title>Semiparametric copula method for semi-competing risks data subject to interval censoring and left truncation: Application to disability in elderly</title><author>Sun, Tao ; Li, Yunlong ; Xiao, Zhengyan ; Ding, Ying ; Wang, Xiaojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-2cfbe72012fbd25254866f83fc497ae67e89129ec793f61183e93115e722c9cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aged</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Competing risks models</topic><topic>Computer Simulation</topic><topic>Disability</topic><topic>Humans</topic><topic>Intermittent</topic><topic>Likelihood Functions</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood method</topic><topic>Models, Statistical</topic><topic>Older people</topic><topic>Parameters</topic><topic>Proportional Hazards Models</topic><topic>Transformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Tao</creatorcontrib><creatorcontrib>Li, Yunlong</creatorcontrib><creatorcontrib>Xiao, Zhengyan</creatorcontrib><creatorcontrib>Ding, Ying</creatorcontrib><creatorcontrib>Wang, Xiaojun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistical methods in medical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Tao</au><au>Li, Yunlong</au><au>Xiao, Zhengyan</au><au>Ding, Ying</au><au>Wang, Xiaojun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiparametric copula method for semi-competing risks data subject to interval censoring and left truncation: Application to disability in elderly</atitle><jtitle>Statistical methods in medical research</jtitle><addtitle>Stat Methods Med Res</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>32</volume><issue>4</issue><spage>656</spage><epage>670</epage><pages>656-670</pages><issn>0962-2802</issn><eissn>1477-0334</eissn><abstract>We aim to evaluate the marginal effects of covariates on time-to-disability in the elderly under the semi-competing risks framework, as death dependently censors disability, not vice versa. It becomes particularly challenging when time-to-disability is subject to interval censoring due to intermittent assessments. A left truncation issue arises when the age time scale is applied. We develop a flexible two-parameter copula-based semiparametric transformation model for semi-competing risks data subject to interval censoring and left truncation. The two-parameter copula quantifies both upper and lower tail dependence between two margins. The semiparametric transformation models incorporate proportional hazards and proportional odds models in both margins. We propose a two-step sieve maximum likelihood estimation procedure and study the sieve estimators’ asymptotic properties. Simulations show that the proposed method corrects biases in the marginal method. We demonstrate the proposed method in a large-scale Chinese Longitudinal Healthy Longevity Study and provide new insights into preventing disability in the elderly. The proposed method could be applied to the general semi-competing risks data with intermittently assessed disease status.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>36735020</pmid><doi>10.1177/09622802221133552</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4447-3005</orcidid><orcidid>https://orcid.org/0000-0001-5783-3167</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-2802 |
ispartof | Statistical methods in medical research, 2023-04, Vol.32 (4), p.656-670 |
issn | 0962-2802 1477-0334 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11070129 |
source | Applied Social Sciences Index & Abstracts (ASSIA); SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024:2025 extension (reading list) |
subjects | Aged Asymptotic methods Asymptotic properties Competing risks models Computer Simulation Disability Humans Intermittent Likelihood Functions Mathematical models Maximum likelihood estimation Maximum likelihood method Models, Statistical Older people Parameters Proportional Hazards Models Transformation |
title | Semiparametric copula method for semi-competing risks data subject to interval censoring and left truncation: Application to disability in elderly |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiparametric%20copula%20method%20for%20semi-competing%20risks%20data%20subject%20to%20interval%20censoring%20and%20left%20truncation:%20Application%20to%20disability%20in%20elderly&rft.jtitle=Statistical%20methods%20in%20medical%20research&rft.au=Sun,%20Tao&rft.date=2023-04-01&rft.volume=32&rft.issue=4&rft.spage=656&rft.epage=670&rft.pages=656-670&rft.issn=0962-2802&rft.eissn=1477-0334&rft_id=info:doi/10.1177/09622802221133552&rft_dat=%3Cproquest_pubme%3E2803278621%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c424t-2cfbe72012fbd25254866f83fc497ae67e89129ec793f61183e93115e722c9cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2803278621&rft_id=info:pmid/36735020&rft_sage_id=10.1177_09622802221133552&rfr_iscdi=true |