Loading…

Semiparametric copula method for semi-competing risks data subject to interval censoring and left truncation: Application to disability in elderly

We aim to evaluate the marginal effects of covariates on time-to-disability in the elderly under the semi-competing risks framework, as death dependently censors disability, not vice versa. It becomes particularly challenging when time-to-disability is subject to interval censoring due to intermitte...

Full description

Saved in:
Bibliographic Details
Published in:Statistical methods in medical research 2023-04, Vol.32 (4), p.656-670
Main Authors: Sun, Tao, Li, Yunlong, Xiao, Zhengyan, Ding, Ying, Wang, Xiaojun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c424t-2cfbe72012fbd25254866f83fc497ae67e89129ec793f61183e93115e722c9cd3
cites cdi_FETCH-LOGICAL-c424t-2cfbe72012fbd25254866f83fc497ae67e89129ec793f61183e93115e722c9cd3
container_end_page 670
container_issue 4
container_start_page 656
container_title Statistical methods in medical research
container_volume 32
creator Sun, Tao
Li, Yunlong
Xiao, Zhengyan
Ding, Ying
Wang, Xiaojun
description We aim to evaluate the marginal effects of covariates on time-to-disability in the elderly under the semi-competing risks framework, as death dependently censors disability, not vice versa. It becomes particularly challenging when time-to-disability is subject to interval censoring due to intermittent assessments. A left truncation issue arises when the age time scale is applied. We develop a flexible two-parameter copula-based semiparametric transformation model for semi-competing risks data subject to interval censoring and left truncation. The two-parameter copula quantifies both upper and lower tail dependence between two margins. The semiparametric transformation models incorporate proportional hazards and proportional odds models in both margins. We propose a two-step sieve maximum likelihood estimation procedure and study the sieve estimators’ asymptotic properties. Simulations show that the proposed method corrects biases in the marginal method. We demonstrate the proposed method in a large-scale Chinese Longitudinal Healthy Longevity Study and provide new insights into preventing disability in the elderly. The proposed method could be applied to the general semi-competing risks data with intermittently assessed disease status.
doi_str_mv 10.1177/09622802221133552
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11070129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_09622802221133552</sage_id><sourcerecordid>2803278621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-2cfbe72012fbd25254866f83fc497ae67e89129ec793f61183e93115e722c9cd3</originalsourceid><addsrcrecordid>eNp1kc1u1TAQhS0EoreFB2CDLLFhk-KfJE7YoKqiUKlSF4W15TjjW18cO9hOpfsaPHEd3VL-xMoazXfOzPgg9IqSU0qFeEf6lrGOMMYo5bxp2BO0obUQFeG8foo2a79agSN0nNKOECJI3T9HR7wVvCGMbNCPG5jsrKKaIEersQ7z4hQu1W0YsQkRpwJUOkwzZOu3ONr0LeFRZYXTMuxAZ5wDtj5DvFMOa_ApxBVUfsQOTGnHxWuVbfDv8dk8O3soVtlokxqss3lfHDC4EaLbv0DPjHIJXj68J-jrxccv55-rq-tPl-dnV5WuWZ0rps0AghHKzDCyhjV117am40bXvVDQCuh6ynrQouempbTj0HNKm6JhutcjP0EfDr7zMkwwls1zVE7O0U4q7mVQVv7Z8fZWbsOdpLT8Y7EuDm8fHGL4vkDKcrJJg3PKQ1iSZEKUiYITWtA3f6G7sERf7pMlIM5E17KVogdKx5BSBPO4DSVyjVz-E3nRvP79jEfFz4wLcHoAktrCr7H_d7wHmpK2nA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2803278621</pqid></control><display><type>article</type><title>Semiparametric copula method for semi-competing risks data subject to interval censoring and left truncation: Application to disability in elderly</title><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024:2025 extension (reading list)</source><creator>Sun, Tao ; Li, Yunlong ; Xiao, Zhengyan ; Ding, Ying ; Wang, Xiaojun</creator><creatorcontrib>Sun, Tao ; Li, Yunlong ; Xiao, Zhengyan ; Ding, Ying ; Wang, Xiaojun</creatorcontrib><description>We aim to evaluate the marginal effects of covariates on time-to-disability in the elderly under the semi-competing risks framework, as death dependently censors disability, not vice versa. It becomes particularly challenging when time-to-disability is subject to interval censoring due to intermittent assessments. A left truncation issue arises when the age time scale is applied. We develop a flexible two-parameter copula-based semiparametric transformation model for semi-competing risks data subject to interval censoring and left truncation. The two-parameter copula quantifies both upper and lower tail dependence between two margins. The semiparametric transformation models incorporate proportional hazards and proportional odds models in both margins. We propose a two-step sieve maximum likelihood estimation procedure and study the sieve estimators’ asymptotic properties. Simulations show that the proposed method corrects biases in the marginal method. We demonstrate the proposed method in a large-scale Chinese Longitudinal Healthy Longevity Study and provide new insights into preventing disability in the elderly. The proposed method could be applied to the general semi-competing risks data with intermittently assessed disease status.</description><identifier>ISSN: 0962-2802</identifier><identifier>EISSN: 1477-0334</identifier><identifier>DOI: 10.1177/09622802221133552</identifier><identifier>PMID: 36735020</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Aged ; Asymptotic methods ; Asymptotic properties ; Competing risks models ; Computer Simulation ; Disability ; Humans ; Intermittent ; Likelihood Functions ; Mathematical models ; Maximum likelihood estimation ; Maximum likelihood method ; Models, Statistical ; Older people ; Parameters ; Proportional Hazards Models ; Transformation</subject><ispartof>Statistical methods in medical research, 2023-04, Vol.32 (4), p.656-670</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-2cfbe72012fbd25254866f83fc497ae67e89129ec793f61183e93115e722c9cd3</citedby><cites>FETCH-LOGICAL-c424t-2cfbe72012fbd25254866f83fc497ae67e89129ec793f61183e93115e722c9cd3</cites><orcidid>0000-0003-4447-3005 ; 0000-0001-5783-3167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902,30976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36735020$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Tao</creatorcontrib><creatorcontrib>Li, Yunlong</creatorcontrib><creatorcontrib>Xiao, Zhengyan</creatorcontrib><creatorcontrib>Ding, Ying</creatorcontrib><creatorcontrib>Wang, Xiaojun</creatorcontrib><title>Semiparametric copula method for semi-competing risks data subject to interval censoring and left truncation: Application to disability in elderly</title><title>Statistical methods in medical research</title><addtitle>Stat Methods Med Res</addtitle><description>We aim to evaluate the marginal effects of covariates on time-to-disability in the elderly under the semi-competing risks framework, as death dependently censors disability, not vice versa. It becomes particularly challenging when time-to-disability is subject to interval censoring due to intermittent assessments. A left truncation issue arises when the age time scale is applied. We develop a flexible two-parameter copula-based semiparametric transformation model for semi-competing risks data subject to interval censoring and left truncation. The two-parameter copula quantifies both upper and lower tail dependence between two margins. The semiparametric transformation models incorporate proportional hazards and proportional odds models in both margins. We propose a two-step sieve maximum likelihood estimation procedure and study the sieve estimators’ asymptotic properties. Simulations show that the proposed method corrects biases in the marginal method. We demonstrate the proposed method in a large-scale Chinese Longitudinal Healthy Longevity Study and provide new insights into preventing disability in the elderly. The proposed method could be applied to the general semi-competing risks data with intermittently assessed disease status.</description><subject>Aged</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Competing risks models</subject><subject>Computer Simulation</subject><subject>Disability</subject><subject>Humans</subject><subject>Intermittent</subject><subject>Likelihood Functions</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood method</subject><subject>Models, Statistical</subject><subject>Older people</subject><subject>Parameters</subject><subject>Proportional Hazards Models</subject><subject>Transformation</subject><issn>0962-2802</issn><issn>1477-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNp1kc1u1TAQhS0EoreFB2CDLLFhk-KfJE7YoKqiUKlSF4W15TjjW18cO9hOpfsaPHEd3VL-xMoazXfOzPgg9IqSU0qFeEf6lrGOMMYo5bxp2BO0obUQFeG8foo2a79agSN0nNKOECJI3T9HR7wVvCGMbNCPG5jsrKKaIEersQ7z4hQu1W0YsQkRpwJUOkwzZOu3ONr0LeFRZYXTMuxAZ5wDtj5DvFMOa_ApxBVUfsQOTGnHxWuVbfDv8dk8O3soVtlokxqss3lfHDC4EaLbv0DPjHIJXj68J-jrxccv55-rq-tPl-dnV5WuWZ0rps0AghHKzDCyhjV117am40bXvVDQCuh6ynrQouempbTj0HNKm6JhutcjP0EfDr7zMkwwls1zVE7O0U4q7mVQVv7Z8fZWbsOdpLT8Y7EuDm8fHGL4vkDKcrJJg3PKQ1iSZEKUiYITWtA3f6G7sERf7pMlIM5E17KVogdKx5BSBPO4DSVyjVz-E3nRvP79jEfFz4wLcHoAktrCr7H_d7wHmpK2nA</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Sun, Tao</creator><creator>Li, Yunlong</creator><creator>Xiao, Zhengyan</creator><creator>Ding, Ying</creator><creator>Wang, Xiaojun</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4447-3005</orcidid><orcidid>https://orcid.org/0000-0001-5783-3167</orcidid></search><sort><creationdate>20230401</creationdate><title>Semiparametric copula method for semi-competing risks data subject to interval censoring and left truncation: Application to disability in elderly</title><author>Sun, Tao ; Li, Yunlong ; Xiao, Zhengyan ; Ding, Ying ; Wang, Xiaojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-2cfbe72012fbd25254866f83fc497ae67e89129ec793f61183e93115e722c9cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aged</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Competing risks models</topic><topic>Computer Simulation</topic><topic>Disability</topic><topic>Humans</topic><topic>Intermittent</topic><topic>Likelihood Functions</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood method</topic><topic>Models, Statistical</topic><topic>Older people</topic><topic>Parameters</topic><topic>Proportional Hazards Models</topic><topic>Transformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Tao</creatorcontrib><creatorcontrib>Li, Yunlong</creatorcontrib><creatorcontrib>Xiao, Zhengyan</creatorcontrib><creatorcontrib>Ding, Ying</creatorcontrib><creatorcontrib>Wang, Xiaojun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistical methods in medical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Tao</au><au>Li, Yunlong</au><au>Xiao, Zhengyan</au><au>Ding, Ying</au><au>Wang, Xiaojun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiparametric copula method for semi-competing risks data subject to interval censoring and left truncation: Application to disability in elderly</atitle><jtitle>Statistical methods in medical research</jtitle><addtitle>Stat Methods Med Res</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>32</volume><issue>4</issue><spage>656</spage><epage>670</epage><pages>656-670</pages><issn>0962-2802</issn><eissn>1477-0334</eissn><abstract>We aim to evaluate the marginal effects of covariates on time-to-disability in the elderly under the semi-competing risks framework, as death dependently censors disability, not vice versa. It becomes particularly challenging when time-to-disability is subject to interval censoring due to intermittent assessments. A left truncation issue arises when the age time scale is applied. We develop a flexible two-parameter copula-based semiparametric transformation model for semi-competing risks data subject to interval censoring and left truncation. The two-parameter copula quantifies both upper and lower tail dependence between two margins. The semiparametric transformation models incorporate proportional hazards and proportional odds models in both margins. We propose a two-step sieve maximum likelihood estimation procedure and study the sieve estimators’ asymptotic properties. Simulations show that the proposed method corrects biases in the marginal method. We demonstrate the proposed method in a large-scale Chinese Longitudinal Healthy Longevity Study and provide new insights into preventing disability in the elderly. The proposed method could be applied to the general semi-competing risks data with intermittently assessed disease status.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>36735020</pmid><doi>10.1177/09622802221133552</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4447-3005</orcidid><orcidid>https://orcid.org/0000-0001-5783-3167</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0962-2802
ispartof Statistical methods in medical research, 2023-04, Vol.32 (4), p.656-670
issn 0962-2802
1477-0334
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11070129
source Applied Social Sciences Index & Abstracts (ASSIA); SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024:2025 extension (reading list)
subjects Aged
Asymptotic methods
Asymptotic properties
Competing risks models
Computer Simulation
Disability
Humans
Intermittent
Likelihood Functions
Mathematical models
Maximum likelihood estimation
Maximum likelihood method
Models, Statistical
Older people
Parameters
Proportional Hazards Models
Transformation
title Semiparametric copula method for semi-competing risks data subject to interval censoring and left truncation: Application to disability in elderly
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiparametric%20copula%20method%20for%20semi-competing%20risks%20data%20subject%20to%20interval%20censoring%20and%20left%20truncation:%20Application%20to%20disability%20in%20elderly&rft.jtitle=Statistical%20methods%20in%20medical%20research&rft.au=Sun,%20Tao&rft.date=2023-04-01&rft.volume=32&rft.issue=4&rft.spage=656&rft.epage=670&rft.pages=656-670&rft.issn=0962-2802&rft.eissn=1477-0334&rft_id=info:doi/10.1177/09622802221133552&rft_dat=%3Cproquest_pubme%3E2803278621%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c424t-2cfbe72012fbd25254866f83fc497ae67e89129ec793f61183e93115e722c9cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2803278621&rft_id=info:pmid/36735020&rft_sage_id=10.1177_09622802221133552&rfr_iscdi=true