Loading…

Quantification of Hydride Coverage on Cu(111) by Electrochemical Mass Spectrometry

Electrochemical mass spectrometry (EC-MS) is combined with chronoamperometry to quantify H coverage associated with the surface hydride phase on Cu(111) in 0.1 mol/L H2SO4. A two-step potential pulse program is used to examine anion desorption and hydride formation, and the inverse, by tracking the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2022-01, Vol.126 (44), p.18734-18743
Main Authors: Raciti, David, Moffat, Thomas P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a388t-2d92295ce4bfa7bc67f581db177a69192dfe741fcf9e7c7f1df2562e3c00673d3
cites cdi_FETCH-LOGICAL-a388t-2d92295ce4bfa7bc67f581db177a69192dfe741fcf9e7c7f1df2562e3c00673d3
container_end_page 18743
container_issue 44
container_start_page 18734
container_title Journal of physical chemistry. C
container_volume 126
creator Raciti, David
Moffat, Thomas P.
description Electrochemical mass spectrometry (EC-MS) is combined with chronoamperometry to quantify H coverage associated with the surface hydride phase on Cu(111) in 0.1 mol/L H2SO4. A two-step potential pulse program is used to examine anion desorption and hydride formation, and the inverse, by tracking the 2 atomic mass unit (amu) signal for H2 production in comparison to the charge passed. On the negative potential step, the reduction current is partitioned between anion desorption, hydride formation, and the hydrogen evolution reaction (HER). For modest overpotentials, variations in partial processes are evident as inflections in the chronoamperometry and EC-MS signal. On the return step to positive potentials, hydride decomposition by H recombination to H2 occurs in parallel with sulfate adsorption. The challenge associated with the inherent diffusional delay in the EC-MS response is mitigated by total H2 collection and steady-state analysis facilitated by the thin-layer EC-MS cell geometry as demonstrated for the HER on a non-hydride forming Ag electrode. Analysis of the respective transients and steady-state response on Cu(111) reveals a saturated hydride fractional coverage of 0.67 at negative potentials with an upper bound charge of 106 μC/cm2 (average electrosorption valency of ≈1.76) associated with adsorption of the (√3 × √7) mixed sulfate-water adlayer at positive potentials.
doi_str_mv 10.1021/acs.jpcc.2c06207
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11070959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051938183</sourcerecordid><originalsourceid>FETCH-LOGICAL-a388t-2d92295ce4bfa7bc67f581db177a69192dfe741fcf9e7c7f1df2562e3c00673d3</originalsourceid><addsrcrecordid>eNp1UU1LxDAQDaL4ffckPSq4ayZpm-YksvgFivh1Dmk60UrbrEm7sP_e6K6LHjzNMPPem-E9Qg6AjoEyONUmjN-nxoyZoTmjYo1sg-RsJNIsW1_1qdgiOyG8U5pxCnyTbPFCAKRcbpPHh0F3fW1ro_vadYmzyfW88nWFycTN0OtXTOJ4MhwBwHFSzpOLBk3vnXnDNpKa5E6HkDxNv4ct9n6-RzasbgLuL-suebm8eJ5cj27vr24m57cjzYuiH7FKMiYzg2lptShNLmxWQFWCEDqXIFllUaRgjZUojLBQWZblDLmhNBe84rvkbKE7HcoWK4Nd73Wjpr5utZ8rp2v1d9PVb-rVzRQAFVRmMiocLRW8-xgw9Kqtg8Gm0R26IShOs2hhAQWPULqAGu9C8GhXd4CqryxUzEJ9ZaGWWUTK4e__VoQf8yPgZAH4prrBd9Gu__U-Abqblng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051938183</pqid></control><display><type>article</type><title>Quantification of Hydride Coverage on Cu(111) by Electrochemical Mass Spectrometry</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Raciti, David ; Moffat, Thomas P.</creator><creatorcontrib>Raciti, David ; Moffat, Thomas P.</creatorcontrib><description>Electrochemical mass spectrometry (EC-MS) is combined with chronoamperometry to quantify H coverage associated with the surface hydride phase on Cu(111) in 0.1 mol/L H2SO4. A two-step potential pulse program is used to examine anion desorption and hydride formation, and the inverse, by tracking the 2 atomic mass unit (amu) signal for H2 production in comparison to the charge passed. On the negative potential step, the reduction current is partitioned between anion desorption, hydride formation, and the hydrogen evolution reaction (HER). For modest overpotentials, variations in partial processes are evident as inflections in the chronoamperometry and EC-MS signal. On the return step to positive potentials, hydride decomposition by H recombination to H2 occurs in parallel with sulfate adsorption. The challenge associated with the inherent diffusional delay in the EC-MS response is mitigated by total H2 collection and steady-state analysis facilitated by the thin-layer EC-MS cell geometry as demonstrated for the HER on a non-hydride forming Ag electrode. Analysis of the respective transients and steady-state response on Cu(111) reveals a saturated hydride fractional coverage of 0.67 at negative potentials with an upper bound charge of 106 μC/cm2 (average electrosorption valency of ≈1.76) associated with adsorption of the (√3 × √7) mixed sulfate-water adlayer at positive potentials.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.2c06207</identifier><identifier>PMID: 38711439</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>C: Chemical and Catalytic Reactivity at Interfaces</subject><ispartof>Journal of physical chemistry. C, 2022-01, Vol.126 (44), p.18734-18743</ispartof><rights>Not subject to U.S. Copyright. Published 2022 by American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a388t-2d92295ce4bfa7bc67f581db177a69192dfe741fcf9e7c7f1df2562e3c00673d3</citedby><cites>FETCH-LOGICAL-a388t-2d92295ce4bfa7bc67f581db177a69192dfe741fcf9e7c7f1df2562e3c00673d3</cites><orcidid>0000-0002-9580-4524 ; 0000-0003-4377-1692</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38711439$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Raciti, David</creatorcontrib><creatorcontrib>Moffat, Thomas P.</creatorcontrib><title>Quantification of Hydride Coverage on Cu(111) by Electrochemical Mass Spectrometry</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Electrochemical mass spectrometry (EC-MS) is combined with chronoamperometry to quantify H coverage associated with the surface hydride phase on Cu(111) in 0.1 mol/L H2SO4. A two-step potential pulse program is used to examine anion desorption and hydride formation, and the inverse, by tracking the 2 atomic mass unit (amu) signal for H2 production in comparison to the charge passed. On the negative potential step, the reduction current is partitioned between anion desorption, hydride formation, and the hydrogen evolution reaction (HER). For modest overpotentials, variations in partial processes are evident as inflections in the chronoamperometry and EC-MS signal. On the return step to positive potentials, hydride decomposition by H recombination to H2 occurs in parallel with sulfate adsorption. The challenge associated with the inherent diffusional delay in the EC-MS response is mitigated by total H2 collection and steady-state analysis facilitated by the thin-layer EC-MS cell geometry as demonstrated for the HER on a non-hydride forming Ag electrode. Analysis of the respective transients and steady-state response on Cu(111) reveals a saturated hydride fractional coverage of 0.67 at negative potentials with an upper bound charge of 106 μC/cm2 (average electrosorption valency of ≈1.76) associated with adsorption of the (√3 × √7) mixed sulfate-water adlayer at positive potentials.</description><subject>C: Chemical and Catalytic Reactivity at Interfaces</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UU1LxDAQDaL4ffckPSq4ayZpm-YksvgFivh1Dmk60UrbrEm7sP_e6K6LHjzNMPPem-E9Qg6AjoEyONUmjN-nxoyZoTmjYo1sg-RsJNIsW1_1qdgiOyG8U5pxCnyTbPFCAKRcbpPHh0F3fW1ro_vadYmzyfW88nWFycTN0OtXTOJ4MhwBwHFSzpOLBk3vnXnDNpKa5E6HkDxNv4ct9n6-RzasbgLuL-suebm8eJ5cj27vr24m57cjzYuiH7FKMiYzg2lptShNLmxWQFWCEDqXIFllUaRgjZUojLBQWZblDLmhNBe84rvkbKE7HcoWK4Nd73Wjpr5utZ8rp2v1d9PVb-rVzRQAFVRmMiocLRW8-xgw9Kqtg8Gm0R26IShOs2hhAQWPULqAGu9C8GhXd4CqryxUzEJ9ZaGWWUTK4e__VoQf8yPgZAH4prrBd9Gu__U-Abqblng</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Raciti, David</creator><creator>Moffat, Thomas P.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9580-4524</orcidid><orcidid>https://orcid.org/0000-0003-4377-1692</orcidid></search><sort><creationdate>20220101</creationdate><title>Quantification of Hydride Coverage on Cu(111) by Electrochemical Mass Spectrometry</title><author>Raciti, David ; Moffat, Thomas P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a388t-2d92295ce4bfa7bc67f581db177a69192dfe741fcf9e7c7f1df2562e3c00673d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>C: Chemical and Catalytic Reactivity at Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raciti, David</creatorcontrib><creatorcontrib>Moffat, Thomas P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raciti, David</au><au>Moffat, Thomas P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantification of Hydride Coverage on Cu(111) by Electrochemical Mass Spectrometry</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>126</volume><issue>44</issue><spage>18734</spage><epage>18743</epage><pages>18734-18743</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Electrochemical mass spectrometry (EC-MS) is combined with chronoamperometry to quantify H coverage associated with the surface hydride phase on Cu(111) in 0.1 mol/L H2SO4. A two-step potential pulse program is used to examine anion desorption and hydride formation, and the inverse, by tracking the 2 atomic mass unit (amu) signal for H2 production in comparison to the charge passed. On the negative potential step, the reduction current is partitioned between anion desorption, hydride formation, and the hydrogen evolution reaction (HER). For modest overpotentials, variations in partial processes are evident as inflections in the chronoamperometry and EC-MS signal. On the return step to positive potentials, hydride decomposition by H recombination to H2 occurs in parallel with sulfate adsorption. The challenge associated with the inherent diffusional delay in the EC-MS response is mitigated by total H2 collection and steady-state analysis facilitated by the thin-layer EC-MS cell geometry as demonstrated for the HER on a non-hydride forming Ag electrode. Analysis of the respective transients and steady-state response on Cu(111) reveals a saturated hydride fractional coverage of 0.67 at negative potentials with an upper bound charge of 106 μC/cm2 (average electrosorption valency of ≈1.76) associated with adsorption of the (√3 × √7) mixed sulfate-water adlayer at positive potentials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38711439</pmid><doi>10.1021/acs.jpcc.2c06207</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9580-4524</orcidid><orcidid>https://orcid.org/0000-0003-4377-1692</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2022-01, Vol.126 (44), p.18734-18743
issn 1932-7447
1932-7455
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11070959
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects C: Chemical and Catalytic Reactivity at Interfaces
title Quantification of Hydride Coverage on Cu(111) by Electrochemical Mass Spectrometry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A11%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantification%20of%20Hydride%20Coverage%20on%20Cu(111)%20by%20Electrochemical%20Mass%20Spectrometry&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Raciti,%20David&rft.date=2022-01-01&rft.volume=126&rft.issue=44&rft.spage=18734&rft.epage=18743&rft.pages=18734-18743&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.2c06207&rft_dat=%3Cproquest_pubme%3E3051938183%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a388t-2d92295ce4bfa7bc67f581db177a69192dfe741fcf9e7c7f1df2562e3c00673d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3051938183&rft_id=info:pmid/38711439&rfr_iscdi=true